scholarly journals The New Era of Three-Dimensional Histoarchitecture of the Human Endometrium

2021 ◽  
Vol 11 (8) ◽  
pp. 713
Author(s):  
Manako Yamaguchi ◽  
Kosuke Yoshihara ◽  
Nozomi Yachida ◽  
Kazuaki Suda ◽  
Ryo Tamura ◽  
...  

The histology of the endometrium has traditionally been established by observation of two-dimensional (2D) pathological sections. However, because human endometrial glands exhibit coiling and branching morphology, it is extremely difficult to obtain an entire image of the glands by 2D observation. In recent years, the development of three-dimensional (3D) reconstruction of serial pathological sections by computer and whole-mount imaging technology using tissue clearing methods with high-resolution fluorescence microscopy has enabled us to observe the 3D histoarchitecture of tissues. As a result, 3D imaging has revealed that human endometrial glands form a plexus network in the basalis, similar to the rhizome of grass, whereas mouse uterine glands are single branched tubular glands. This review summarizes the relevant literature on the 3D structure of mouse and human endometrium and discusses the significance of the rhizome structure in the human endometrium and the expected role of understanding the 3D tissue structure in future applications to systems biology.

Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yun Chen ◽  
Ya-Hui Tsai ◽  
Yuan-An Liu ◽  
Shih-Hua Lee ◽  
Sheng-Hong Tseng ◽  
...  

Two-dimensional (2D) histopathology is the standard analytical method for intestinal biopsied tissues; however, the role of 3-dimensional (3D) imaging system in the analysis of the intestinal tissues is unclear. The 3D structure of the crypt organoids from the intestinal stem cell culture and intestinal tissues from the donors and recipients after intestinal transplantation was observed using a 3D imaging system and compared with 2D histopathology and immunohistochemistry. The crypt organoids and intestinal tissues showed well-defined 3D structures. The 3D images of the intestinal tissues with acute rejection revealed absence of villi and few crypts, which were consistent with the histopathological features. In the intestinal transplant for megacystis microcolon intestinal hypoperistalsis syndrome, the donor’s intestinal tissues had well-developed nerve networks and interstitial cells of Cajal (ICCs) in the muscle layer, while the recipient’s intestinal tissues had distorted nerve network and the ICCs were few and sparsely distributed, relative to those of the donor. The 3D images showed a clear spatial relationship between the microstructures of the small bowel and the features of graft rejection. In conclusion, integration of the 3D imaging and 2D histopathology provided a global view of the intestinal tissues from the transplant patients.


Author(s):  
Rashmi Verma ◽  
Navin Kumar ◽  
Ashish Thapliyal

Objective: Dexamethasone-induced Ras-related protein 1 (Dexras1) and Ras homolog enriched in striatum (RHES) are the two monomeric small G proteins that belong to Ras superfamily. These two proteins show 62% similarity. Both of these proteins are involved in signaling and modulation of several pathophysiological processes. They have unique GTP binding domain and a unique C and N terminus. C terminus is known to interact with several proteins; however, the role of its unique N terminus is still not known. The three-dimensional (3D) structure of these proteins is also not available in any of the databases yet. This present study approaches bioinformatics tools and servers to predict the 3D structure of these two proteins in silico.Methods: In this study, two bioinformatics servers were used, namely Swiss modeling server and Iterative Threading ASSEmbly Refinement (I-TASSER) server.Results: Both servers developed many alignment templates of Dexras1 and RHES. These alignments were used to develop 3D structure using Pymol. These models have different regions of proteins such as N terminus, GTP-binding domains, effector loop, C terminus, and the unique CAAX site. The models deduce that the N-terminals of both Dexras1 and RHES are unique regions that might possible be dangling out of the protein while it gets inserted into the membrane. We hypothesize that this unique N-terminal might have a distinct role in the modulation of N-type calcium channels.Conclusion: All the models generated show predicted 3D structure of Dexras1 and RHES protein. This study of structural prediction will be helpful in knowing the interaction of Dexras1 and RHES and a step forward to target these two proteins as a novel therapeutic drug.


2021 ◽  
Vol 13 (11) ◽  
pp. 2065
Author(s):  
Wenjie Yin ◽  
Weizheng Jin ◽  
Chen Zhou ◽  
Yi Liu ◽  
Qiong Tang ◽  
...  

In this study, detection and three-dimensional (3D) imaging of lightning plasma channels are presented using radar interferometry. Experiments were carried out in Leshan, China with a 48.2 MHz VHF radar configured with an interferometric antenna array. The typical characteristics of lightning echoes are studied in the form of amplitude, phase, and doppler spectra derived from the raw in-phase/quadrature (I/Q) data. In addition, the 3D structure of lightning channels is reconstructed using the interferometry technique. The localization results of lightning are verified with the locating results of lightning detection networks operating at VLF ranges, which indicate the feasibility of using VHF radar for lightning mapping. The interpretation of the observational results is complicated by the dendric structure of lightning channel and the overlap between passive electromagnetic radiations and return echoes. Nevertheless, some parts of the characteristics of lightning are still evident. The observational result of return echoes shows good consistency with the overdense assumption of lightning channels. The transition from the overdense channel to the underdense channel in the form of amplitude and phase is clearly observed. This technique is very promising to reveal the typical characteristics of lightning return echoes and structure of lightning propagation processes.


Author(s):  
Etsuo A. Susaki ◽  
Minoru Takasato

An organoid, a self-organizing organ-like tissue developed from stem cells, can exhibit a miniaturized three-dimensional (3D) structure and part of the physiological functions of the original organ. Due to the reproducibility of tissue complexity and ease of handling, organoids have replaced real organs and animals for a variety of uses, such as investigations of the mechanisms of organogenesis and disease onset, and screening of drug effects and/or toxicity. The recent advent of tissue clearing and 3D imaging techniques have great potential contributions to organoid studies by allowing the collection and analysis of 3D images of whole organoids with a reasonable throughput and thus can expand the means of examining the 3D architecture, cellular components, and variability among organoids. Genetic and histological cell-labeling methods, together with organoid clearing, also allow visualization of critical structures and cellular components within organoids. The collected 3D data may enable image analysis to quantitatively assess structures within organoids and sensitively/effectively detect abnormalities caused by perturbations. These capabilities of tissue/organoid clearing and 3D imaging techniques not only extend the utility of organoids in basic biology but can also be applied for quality control of clinical organoid production and large-scale drug screening.


2020 ◽  
Vol 287 (1920) ◽  
pp. 20192383 ◽  
Author(s):  
Tim D'Urban Jackson ◽  
Gareth J. Williams ◽  
Guy Walker-Springett ◽  
Andrew J. Davies

Ecological processes occur over multiple spatial, temporal and thematic scales in three-dimensional (3D) ecosystems. Characterizing and monitoring change in 3D structure at multiple scales is challenging within the practical constraints of conventional ecological tools. Remote sensing from satellites and crewed aircraft has revolutionized broad-scale spatial ecology, but fine-scale patterns and processes operating at sub-metre resolution have remained understudied over continuous extents. We introduce two high-resolution remote sensing tools for rapid and accurate 3D mapping in ecology—terrestrial laser scanning and structure-from-motion photogrammetry. These technologies are likely to become standard sampling tools for mapping and monitoring 3D ecosystem structure across currently under-sampled scales. We present practical guidance in the use of the tools and address barriers to widespread adoption, including testing the accuracy of structure-from-motion models for ecologists. We aim to highlight a new era in spatial ecology that uses high-resolution remote sensing to interrogate 3D digital ecosystems.


Author(s):  
Rashmi Verma ◽  
Navin Kumar ◽  
Ashish Thapliyal

Objective: Dexamethasone-induced Ras-related protein 1 (Dexras1) and Ras homolog enriched in striatum (RHES) are the two monomeric small G proteins that belong to Ras superfamily. These two proteins show 62% similarity. Both of these proteins are involved in signaling and modulation of several pathophysiological processes. They have unique GTP binding domain and a unique C and N terminus. C terminus is known to interact with several proteins; however, the role of its unique N terminus is still not known. The three-dimensional (3D) structure of these proteins is also not available in any of the databases yet. This present study approaches bioinformatics tools and servers to predict the 3D structure of these two proteins in silico.Methods: In this study, two bioinformatics servers were used, namely Swiss modeling server and Iterative Threading ASSEmbly Refinement (I-TASSER) server.Results: Both servers developed many alignment templates of Dexras1 and RHES. These alignments were used to develop 3D structure using Pymol. These models have different regions of proteins such as N terminus, GTP-binding domains, effector loop, C terminus, and the unique CAAX site. The models deduce that the N-terminals of both Dexras1 and RHES are unique regions that might possible be dangling out of the protein while it gets inserted into the membrane. We hypothesize that this unique N-terminal might have a distinct role in the modulation of N-type calcium channels.Conclusion: All the models generated show predicted 3D structure of Dexras1 and RHES protein. This study of structural prediction will be helpful in knowing the interaction of Dexras1 and RHES and a step forward to target these two proteins as a novel therapeutic drug.


2009 ◽  
Vol 107 (2) ◽  
pp. 583-592 ◽  
Author(s):  
Harikrishnan Parameswaran ◽  
Erzsébet Bartolák-Suki ◽  
Hiroshi Hamakawa ◽  
Arnab Majumdar ◽  
Philip G. Allen ◽  
...  

In pulmonary emphysema, the alveolar structure progressively breaks down via a three-dimensional (3D) process that leads to airspace enlargement. The characterization of such structural changes has, however, been based on measurements from two-dimensional (2D) tissue sections or estimates of 3D structure from 2D measurements. In this study, we developed a novel silver staining method for visualizing tissue structure in 3D using micro-computed tomographic (CT) imaging, which showed that at 30 cmH20 fixing pressure, the mean alveolar airspace volume increased from 0.12 nl in normal mice to 0.44 nl and 2.14 nl in emphysematous mice, respectively, at 7 and 14 days following elastase-induced injury. We also assessed tissue structure in 2D using laser scanning confocal microscopy. The mean of the equivalent diameters of the alveolar airspaces was lower in 2D compared with 3D, while its variance was higher in 2D than in 3D in all groups. However, statistical comparisons of alveolar airspace size from normal and emphysematous mice yielded similar results in 2D and 3D: compared with control, both the mean and variance of the equivalent diameters increased by 7 days after treatment. These indexes further increased from day 7 to day 14 following treatment. During the first 7 days following treatment, the relative change in SD increased at a much faster rate compared with the relative change in mean equivalent diameter. We conclude that quantifying heterogeneity in structure can provide new insight into the pathogenesis or progression of emphysema that is enhanced by improved sensitivity using 3D measurements.


2009 ◽  
Vol 83 (14) ◽  
pp. 7142-7150 ◽  
Author(s):  
Sandra Jeudy ◽  
Audrey Lartigue ◽  
Jean-Michel Claverie ◽  
Chantal Abergel

ABSTRACT The analysis of the Acanthamoeba polyphaga mimivirus genome revealed the first virus-encoded nucleoside diphosphate kinase (NDK), an enzyme that is central to the synthesis of RNA and DNA, ubiquitous in cellular organisms, and well conserved among the three domains of life. In contrast with the broad specificity of cellular NDKs for all types of ribo- and deoxyribonucleotides, the mimivirus enzyme exhibits a strongly preferential affinity for deoxypyrimidines. In order to elucidate the molecular basis of this unique substrate specificity, we determined the three-dimensional (3D) structure of the Acanthamoeba polyphaga mimivirus NDK alone and in complex with various nucleotides. As predicted from a sequence comparison with cellular NDKs, the 3D structure of the mimivirus enzyme exhibits a shorter Kpn loop, previously recognized as a main feature of the NDK active site. The structure of the viral enzyme in complex with various nucleotides also pinpointed two residue changes, both located near the active site and specific to the viral NDK, which could explain its stronger affinity for deoxynucleotides and pyrimidine nucleotides. The role of these residues was explored by building a set of viral NDK variants, assaying their enzymatic activities, and determining their 3D structures in complex with various nucleotides. A total of 26 crystallographic structures were determined at resolutions ranging from 2.8 Å to 1.5 Å. Our results suggest that the mimivirus enzyme progressively evolved from an ancestral NDK under the constraints of optimizing its efficiency for the replication of an AT-rich (73%) viral genome in a thymidine-limited host environment.


2015 ◽  
Vol 21 (2) ◽  
pp. 16-26
Author(s):  
Agnė Drąsutienė ◽  
Sigita Aidietienė ◽  
Diana Zakarkaitė

Summary Real time (RT) three-dimensional (3D) imaging is one of the most significant developments of the last decade and is now being used with increasing frequency in echocardiography and interventional cardiology laboratories. Improvements in transducer technologies and the development of a matrix array transducer were the most important achievements that lead to the new era of real time 3D transoesophageal echocardiography (TEE). RT 3D TEE is ideal for assessing the mitral valve (MV) because of its high spatial resolution altering in improved MV anatomic detail. This imaging modality provides images of high quality which is of a great clinical value inmaking diagnosis of MV disease and a valuable tool for surgeons and interventional cardiologists in planning and guiding interventional procedures. This review is intended to provide data about normal MV anatomy and clinical usefulness of RT 3D TEE in defining acquired MV pathology.


Sign in / Sign up

Export Citation Format

Share Document