scholarly journals Threshold Stochastic Conditional Duration Model for Financial Transaction Data

2019 ◽  
Vol 12 (2) ◽  
pp. 88 ◽  
Author(s):  
Zhongxian Men ◽  
Adam W. Kolkiewicz ◽  
Tony S. Wirjanto

This paper proposes a variant of a threshold stochastic conditional duration (TSCD) model for financial data at the transaction level. It assumes that the innovations of the duration process follow a threshold distribution with a positive support. In addition, it also assumes that the latent first-order autoregressive process of the log conditional durations switches between two regimes. The regimes are determined by the levels of the observed durations and the TSCD model is specified to be self-excited. A novel Markov-Chain Monte Carlo method (MCMC) is developed for parameter estimation of the model. For model discrimination, we employ deviance information criteria, which does not depend on the number of model parameters directly. Duration forecasting is constructed by using an auxiliary particle filter based on the fitted models. Simulation studies demonstrate that the proposed TSCD model and MCMC method work well in terms of parameter estimation and duration forecasting. Lastly, the proposed model and method are applied to two classic data sets that have been studied in the literature, namely IBM and Boeing transaction data.

2017 ◽  
Vol 17 (6) ◽  
pp. 401-422 ◽  
Author(s):  
Buu-Chau Truong ◽  
Cathy WS Chen ◽  
Songsak Sriboonchitta

This study proposes a new model for integer-valued time series—the hysteretic Poisson integer-valued generalized autoregressive conditionally heteroskedastic (INGARCH) model—which has an integrated hysteresis zone in the switching mechanism of the conditional expectation. Our modelling framework provides a parsimonious representation of the salient features of integer-valued time series, such as discreteness, over-dispersion, asymmetry and structural change. We adopt Bayesian methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize the Bayesian information criteria for model comparison. We then apply the proposed model to five real time series of criminal incidents recorded by the New South Wales Police Force in Australia. Simulation results and empirical analysis highlight the better performance of hysteresis in modelling the integer-valued time series.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Yusuke Tanaka ◽  
Tomoharu Iwata ◽  
Toshiyuki Tanaka ◽  
Takeshi Kurashima ◽  
Maya Okawa ◽  
...  

We propose a probabilistic model for refining coarse-grained spatial data by utilizing auxiliary spatial data sets. Existing methods require that the spatial granularities of the auxiliary data sets are the same as the desired granularity of target data. The proposed model can effectively make use of auxiliary data sets with various granularities by hierarchically incorporating Gaussian processes. With the proposed model, a distribution for each auxiliary data set on the continuous space is modeled using a Gaussian process, where the representation of uncertainty considers the levels of granularity. The finegrained target data are modeled by another Gaussian process that considers both the spatial correlation and the auxiliary data sets with their uncertainty. We integrate the Gaussian process with a spatial aggregation process that transforms the fine-grained target data into the coarse-grained target data, by which we can infer the fine-grained target Gaussian process from the coarse-grained data. Our model is designed such that the inference of model parameters based on the exact marginal likelihood is possible, in which the variables of finegrained target and auxiliary data are analytically integrated out. Our experiments on real-world spatial data sets demonstrate the effectiveness of the proposed model.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2017 ◽  
Vol 46 (1) ◽  
pp. 41-63 ◽  
Author(s):  
M.E. Mead ◽  
Ahmed Z. Afify ◽  
G.G. Hamedani ◽  
Indranil Ghosh

We define and study a new generalization of the Fréchet distribution called the beta exponential Fréchet distribution. The new model includes thirty two special models. Some of its mathematical properties, including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean residual life, mean inactivity time, order statistics and entropies are derived. The method of maximum likelihood is proposed to estimate the model parameters. A small simulation study is alsoreported. Two real data sets are applied to illustrate the flexibility of the proposed model compared with some nested and non-nested models.


2021 ◽  
Vol 13 (17) ◽  
pp. 3411
Author(s):  
Lanxue Dang ◽  
Peidong Pang ◽  
Xianyu Zuo ◽  
Yang Liu ◽  
Jay Lee

Convolutional neural network (CNN) has shown excellent performance in hyperspectral image (HSI) classification. However, the structure of the CNN models is complex, requiring many training parameters and floating-point operations (FLOPs). This is often inefficient and results in longer training and testing time. In addition, the label samples of hyperspectral data are limited, and a deep network often causes the over-fitting phenomenon. Hence, a dual-path small convolution (DPSC) module is proposed. It is composed of two 1 × 1 small convolutions with a residual path and a density path. It can effectively extract abstract features from HSI. A dual-path small convolution network (DPSCN) is constructed by stacking DPSC modules. Specifically, the proposed model uses a DPSC module to complete the extraction of spectral and spectral–spatial features successively. It then uses a global average pooling layer at the end of the model to replace the conventional fully connected layer to complete the final classification. In the implemented study, all convolutional layers of the proposed network, except the middle layer, use 1 × 1 small convolution, effectively reduced model parameters and increased the speed of feature extraction processes. DPSCN was compared with several current state-of-the-art models. The results on three benchmark HSI data sets demonstrated that the proposed model is of lower complexity, has stronger generalization ability, and has higher classification efficiency.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Garima Sharma ◽  
Rajiv Nandan Rai

PurposeIndustries generally require good maintenance, repair and overhaul (MRO) facilities. Maintenance activities at MRO cover the normal scheduled check-ups known as scheduled preventive maintenance (SPM) whereas an overhaul reviews and rejuvenates the complete system at a scheduled time. The literature is reasonably stocked with reliability modelling of repairable systems considering both the corrective maintenance (CM) and SPM as imperfect. However, in all these situations the overhaul is modelled as perfect repair. Thus, the purpose of this research paper is to develop a mathematical model for the estimation of reliability parameters considering the complete MRO as imperfect.Design/methodology/approachThe paper proposes arithmetic reduction of age (Kijima I) based virtual age model to estimate reliability parameters by considering the complete MRO as imperfect and provides the likelihood and log-likelihood functions for parameter estimation of the proposed model and also presents the various extensions of the proposed model.FindingsFor analysis, two real-time data sets of two components, i.e. turbostarter and plunger pump are considered. The analysis mainly focuses on intensity function and availability of components. The availability analysis of the components directly affects the cost analysis. It is very important to analyze the realistic trend of availability, and the comparative analysis shows that the assumption of perfect overhaul overestimates and minimal overhaul underestimates the performance of the components whereas assumption of imperfect overhaul portraits more sensible deteriorating and availability trend of the components.Originality/valueThe proposed methodology in this paper is a novice and not available in the literature.


2018 ◽  
Vol 15 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Alivarani Mohapatra ◽  
Byamakesh Nayak ◽  
Kanungo Barada Mohanty

Purpose This paper aims to propose a simple, derivative-free novel method named as Nelder–Mead optimization algorithm to estimate the unknown parameters of the photovoltaic (PV) module considering the environmental conditions. Design/methodology/approach At a particular temperature and irradiation, experimental current-voltage (I-V) and power-voltage (P-V) characteristics are drawn and considered as a reference model. The PV system model with unknown model parameters is considered as the adaptive model whose unknown model parameters are to be adapted so that the simulated characteristics closely matches with the experimental characteristics. A single diode (Rsh) model with five unknown model parameters is considered here for the parameter estimation. Findings The key advantages of this method are that parameters are estimated considering environmental conditions. Experimental characteristics are considered for parameter estimation which gives accurate results. Parameters are estimated considering both I-V and P-V curves as most of the applications demand extraction of the actual power from the PV module. Originality/value The proposed model is compared with other three well-known models available in the literature considering various statistical errors. The results show the superiority of the proposed model with a minimum error for both I-V and P-V characteristics.


2021 ◽  
Vol 11 (3) ◽  
pp. 1138
Author(s):  
Kathiresan Gopal ◽  
Lai Soon Lee ◽  
Hsin-Vonn Seow

Epidemiological models play a vital role in understanding the spread and severity of a pandemic of infectious disease, such as the COVID-19 global pandemic. The mathematical modeling of infectious diseases in the form of compartmental models are often employed in studying the probable outbreak growth. Such models heavily rely on a good estimation of the epidemiological parameters for simulating the outbreak trajectory. In this paper, the parameter estimation is formulated as an optimization problem and a metaheuristic algorithm is applied, namely Harmony Search (HS), in order to obtain the optimized epidemiological parameters. The application of HS in epidemiological modeling is demonstrated by implementing ten variants of HS algorithm on five COVID-19 data sets that were calibrated with the prototypical Susceptible-Infectious-Removed (SIR) compartmental model. Computational experiments indicated the ability of HS to be successfully applied to epidemiological modeling and as an efficacious estimator for the model parameters. In essence, HS is proposed as a potential alternative estimation tool for parameters of interest in compartmental epidemiological models.


Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Muhammad Arslan Nasir ◽  
Christophe Chesneau ◽  
Jamal Abdul Nasir ◽  
...  

A new four-parameter lifetime distribution (called the Topp Leone Weibull-Lomax distribution) is proposed in this paper. Different mathematical properties of the proposed distribution were studied which include quantile function, ordinary and incomplete moments, probability weighted moment, conditional moments, order statistics, stochastic ordering, and stress-strength reliability parameter. The regression model and the residual analysis for the proposed model were also carried out. The model parameters were estimated by using the maximum likelihood criterion and the behaviour of these estimated parameters were examined by conducting a simulation study. The importance and flexibility of the proposed distribution have been proved empirically by using four separate data sets.


Sign in / Sign up

Export Citation Format

Share Document