scholarly journals Digital Twin-Driven Decision Making and Planning for Energy Consumption

2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Yasmin Fathy ◽  
Mona Jaber ◽  
Zunaira Nadeem

The Internet of Things (IoT) is revolutionising how energy is delivered from energy producers and used throughout residential households. Optimising the residential energy consumption is a crucial step toward having greener and sustainable energy production. Such optimisation requires a household-centric energy management system as opposed to a one-rule-fits all approach. In this paper, we propose a data-driven multi-layer digital twin of the energy system that aims to mirror households’ actual energy consumption in the form of a household digital twin (HDT). When linked to the energy production digital twin (EDT), HDT empowers the household-centric energy optimisation model to achieve the desired efficiency in energy use. The model intends to improve the efficiency of energy production by flattening the daily energy demand levels. This is done by collaboratively reorganising the energy consumption patterns of residential homes to avoid peak demands whilst accommodating the resident needs and reducing their energy costs. Indeed, our system incorporates the first HDT model to gauge the impact of various modifications on the household energy bill and, subsequently, on energy production. The proposed energy system is applied to a real-world IoT dataset that spans over two years and covers seventeen households. Our conducted experiments show that the model effectively flattened the collective energy demand by 20.9% on synthetic data and 20.4% on a real dataset. At the same time, the average energy cost per household was reduced by 10.7% for the synthetic data and 17.7% for the real dataset.

2021 ◽  
Vol 3 (1) ◽  
pp. 39-46
Author(s):  
Gulshan Maqbool ◽  
Zulqarnain Haider

Energy-saving behaviors are defined as the daily and habitual practices of households that focus on specific reductions in energy use. The main objective of this research was to estimate the impact of the energy-saving behavior of individuals on energy demand and to estimate the impact of factors affections the adoption of energy-saving techniques. The study is based on primary data which is collected through questionnaires. The data were collected from rural and urban households in four tehsils of district Sargodha, Pakistan. The Ordinary Least Square technique was to describe the relationship between electricity consumption and different explanatory variables such as gender, age, region, family members, dwelling area, income, energy consumption awareness, external influencing factors, and household saving behavior. Job status is negative and significant, qualification variable in this study is insignificant, marital status is negatively associated with energy consumption and significant, size of a household has a significant effect on the model.  The monthly income of the household head has a positive and significant effect. Energy consumption awareness is significantly negative. External influencing factors are insignificant. Saving behavior in electronic appliances is significantly negative to energy consumption. Government should put efforts to aware the public about energy-saving measures through an awareness campaign using electronic media like mobile and email. Energy-saving appliances should be a sale at cheap prices. The household should have to change its habitual behavior.


2020 ◽  
Vol 12 (13) ◽  
pp. 5347
Author(s):  
José Luis Fuentes-Bargues ◽  
José-Luis Vivancos ◽  
Pablo Ferrer-Gisbert ◽  
Miguel Ángel Gimeno-Guillem

The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.


Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1242-1265
Author(s):  
Lidia Stermieri ◽  
Chiara Delmastro ◽  
Cristina Becchio ◽  
Stefano Paolo Corgnati

The building sector is currently responsible of 40% of global final energy consumption, influencing the broader energy system in terms of new electricity and heat capacity additions, as well as distribution infrastructure reinforcement. Current building energy efficiency potential is largely untapped, especially at the local level where retrofit interventions are typically enforced, neglecting their potential synergies with the entire energy system. To improve the understanding of these potential interactions, this paper proposes a methodology that links dynamic building simulation and energy planning tools at the urban scale. At first, a detailed bottom-up analysis was conducted to estimate the current and post-retrofit energy demand of the building stock. The stock analysis is further linked to a broader energy system simulation model to understand the impact of building renovation on the whole urban energy system in terms of cost, greenhouse gas emission, and primary energy consumption up to 2050. The methodology is suited to analyze the relationship between building energy demand reduction potential and clean energy sources’ deployment to shift buildings away from fossil fuels, the key priority for decarbonizing buildings. The methodology was applied to the case study city of Torino, Italy, highlighting the critical role of coupling proper building retrofit intervention with district-level heat generation strategies, such as modern district heating able to exploit low-grade heat. Being able to simulate both demand and supply future alternatives, the methodology provides a robust reference for municipalities and energy suppliers aiming at promoting efficient energy policies and targeted investments.


10.29007/ddrc ◽  
2018 ◽  
Author(s):  
Hanna Pihkola ◽  
Mikko Hongisto ◽  
Olli Apilo ◽  
Mika Lasanen ◽  
Saija Vatanen

Mobile data consumption in Finland is among the highest in the world. Increase in mobile data usage has been rapid and continuous growth is foreseen. While the energy consumed per transmitted gigabyte has substantially decreased, it seems that the absolute annual energy consumption related to mobile operators’ activities has started to increase. Simultaneously, consumer behavior is changing. While new end-user devices are more and more energy-efficient, we use more and more time with mobile devices. Is increasing usage outweighing achieved energy savings? What kinds of options are available for tackling increasing energy demand?This paper discusses current and future trends related to energy consumption of mobile data transfer and mobile networks in Finland. Using a top-down approach and publicly available data, an illustrative trend (kWh/gigabyte) for the energy consumption of transmitted mobile data was constructed for the years 2010-2016. In addition, energy consumption related to mobile data transfer is discussed from a life cycle perspective, considering both direct and indirect energy use and challenges in conducting such assessments. Contributions of relevant technological and social developments (radio network technology transformations from 4G to 5G and consumer behavior) are analyzed considering possible trade-offs and pointing out aspects that require future studies.


Author(s):  
Lindsey Kahn ◽  
Hamidreza Najafi

Abstract Lockdown measures and mobility restrictions to combat the spread of COVID-19 have impacted energy consumption patterns. The overall decline of energy use during lockdown restrictions can best be identified through the analysis of energy consumption by source and end-use sectors. Using monthly energy consumption data, the total 9-months use between January and September for the years 2015–2020 is calculated for each end-use sector (transportation, industrial, residential, and commercial). The cumulative consumption within these 9 months of the petroleum, natural gas, biomass, and electricity energy by the various end-use sectors are compared. The analysis shows that the transportation sector experienced the greatest decline (14.38%). To further analyze the impact of COVID-19 on each state within the USA, the consumption of electricity by each state and each end-use sector in the times before and during the pandemic is used to identify the impact of specific lockdown procedures on energy use. The distinction of state-by-state analysis in this study provides a unique metric for consumption forecasting. The average total consumption for each state was found for the years 2015–2019. The total average annual growth rate (AAGR) for 2020 was used to find a correlation coefficient between COVID-19 case and death rate, population density, and lockdown duration. A correlation coefficient was also calculated between the 2020 AAGR for all sectors and AAGR for each individual end-user. The results show that Indiana had the highest percent reduction in consumption of 10.07% while North Dakota had the highest consumption increase of 7.61%. This is likely due to the amount of industrial consumption relative to other sectors in the state.


2021 ◽  
Vol 13 (24) ◽  
pp. 13863
Author(s):  
Yana Akhtyrska ◽  
Franz Fuerst

This study examines the impact of energy management and productivity-enhancing measures, implemented as part of LEED Existing Buildings Operations and Management (EBOM) certification, on source energy use intensity and rental premiums of office spaces using data on four major US markets. Energy management practices, comprised of commissioning and advanced metering, may reduce energy usage. Conversely, improving air quality and occupant comfort in an effort to increase worker productivity may in turn lead to higher overall energy consumption. The willingness to pay for these features in rental office buildings is hypothesised to depend not only on the extent to which productivity gains enhance the profits of a commercial tenant but also on the lease arrangements for passing any energy savings to the tenant. We apply a difference-in-differences method at a LEED EBOM certification group level and a multi-level modelling approach with a panel data structure. The results indicate that energy management and indoor environment practices have the expected effect on energy consumption as described above. However, the magnitude of the achieved rental premiums appears to be independent of the lease type.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stuti Haldar ◽  
Gautam Sharma

Purpose The purpose of this study is to investigate the impacts of urbanization on per capita energy consumption and emissions in India. Design/methodology/approach The present study analyses the effects of urbanization on energy consumption patterns by using the Stochastic Impacts by Regression on Population, Affluence and Technology in India. Time series data from the period of 1960 to 2015 has been considered for the analysis. Variables including Population, GDP per capita, Energy intensity, share of industry in GDP, share of Services in GDP, total energy use and urbanization from World Bank data sources have been used for investigating the relationship between urbanization, affluence and energy use. Findings Energy demand is positively related to affluence (economic growth). Further the results of the analysis also suggest that, as urbanization, GDP and population are bound to increase in the future, consequently resulting in increased carbon dioxide emissions caused by increased energy demand and consumption. Thus, reducing the energy intensity is key to energy security and lower carbon dioxide emissions for India. Research limitations/implications The study will have important policy implications for India’s energy sector transition toward non- conventional, clean energy sources in the wake of growing share of its population residing in urban spaces. Originality/value There are limited number of studies considering the impacts of population density on per capita energy use. So this study also contributes methodologically by establishing per capita energy use as a function of population density and technology (i.e. growth rates of industrial and service sector).


2015 ◽  
Vol 16 (SE) ◽  
pp. 97-103
Author(s):  
Allah Bakhsh Kavoosi ◽  
Shahin Heidari ◽  
Hamed Mazaherian

Growth and development of technology caused enormous transformation and change in the world after Industrial Revolution. The contemporary human has prepared the platform for their realization in many activities that the humans were unable to do it in the past time and struck the dream of their realization in their mind so that today doing many of those activities have been apparently practical by human. This accelerating growth accompanied with consuming a lot of energy where with respect to restriction of the given existing resources, it created energy crises. On the other hand, along with growth in industry and requirement for manpower and immigration from village to city and basic architectural changes in houses, which have emerged due to change in social structure it has led to change in lifestyle and type and quantity of consuming energy in contemporary architecture. Inter alia, with increase in human’s capability, cooling and heating and acoustic and lighting technologies were also changed in architecture and using mechanical system was replaced by traditional systems. Application of modern systems, which resulted from growth of industry and development of technology and it unfortunately, caused further manipulation in nature and destruction of it by human in addition to improving capability and potential of human’s creativity. With respect to growth of population and further need for housing and tendency to the dependent heating and cooling systems to them in this article we may notice that the housing is assumed as the greatest consumer of energy to create balance among the exterior and interior spaces in line with creating welfare conditions for heating and cooling and lighting. The tables of energy demand prediction in Iran show that these costs and energy consumption will be dubbed with energy control smart management in architecture.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1869 ◽  
Author(s):  
Alexandre Lucas ◽  
Giuseppe Prettico ◽  
Marco Flammini ◽  
Evangelos Kotsakis ◽  
Gianluca Fulli ◽  
...  

Electric vehicle (EV) charging infrastructure rollout is well under way in several power systems, namely North America, Japan, Europe, and China. In order to support EV charging infrastructures design and operation, little attempt has been made to develop indicator-based methods characterising such networks across different regions. This study defines an assessment methodology, composed by eight indicators, allowing a comparison among EV public charging infrastructures. The proposed indicators capture the following: energy demand from EVs, energy use intensity, charger’s intensity distribution, the use time ratios, energy use ratios, the nearest neighbour distance between chargers and availability, the total service ratio, and the carbon intensity as an environmental impact indicator. We apply the methodology to a dataset from ElaadNL, a reference smart charging provider in The Netherlands, using open source geographic information system (GIS) and R software. The dataset reveals higher energy intensity in six urban areas and that 50% of energy supplied comes from 19.6% of chargers. Correlations of spatial density are strong and nearest neighbouring distances range from 1101 to 9462 m. Use time and energy use ratios are 11.21% and 3.56%. The average carbon intensity is 4.44 gCO2eq/MJ. Finally, the indicators are used to assess the impact of relevant public policies on the EV charging infrastructure use and roll-out.


2017 ◽  
Vol 28 (7) ◽  
pp. 673-686 ◽  
Author(s):  
Pengfei Sheng ◽  
Yaping He ◽  
Xiaohui Guo

There is no consensus about the impact of urbanization on energy efficiency. We seek to fill this gap in literature using data from 78 countries for the period of 1995 through 2012. Extending the Stochastic Impacts by Regression on Population, Affluence, and Technology model, we identify the impact of urbanization on energy consumption and efficiency. Results of generalized method of moments estimation indicate that the process of urbanization leads to substantial increases in both the actual and the optimal energy consumption, but a decrease in efficiency of energy use. In addition, we find that the extent to which energy inefficiency correlates with urbanization is greater in countries with higher gross domestic product per capita.


Sign in / Sign up

Export Citation Format

Share Document