scholarly journals Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings

2020 ◽  
Vol 12 (13) ◽  
pp. 5347
Author(s):  
José Luis Fuentes-Bargues ◽  
José-Luis Vivancos ◽  
Pablo Ferrer-Gisbert ◽  
Miguel Ángel Gimeno-Guillem

The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.

2021 ◽  
Vol 3 (1) ◽  
pp. 39-46
Author(s):  
Gulshan Maqbool ◽  
Zulqarnain Haider

Energy-saving behaviors are defined as the daily and habitual practices of households that focus on specific reductions in energy use. The main objective of this research was to estimate the impact of the energy-saving behavior of individuals on energy demand and to estimate the impact of factors affections the adoption of energy-saving techniques. The study is based on primary data which is collected through questionnaires. The data were collected from rural and urban households in four tehsils of district Sargodha, Pakistan. The Ordinary Least Square technique was to describe the relationship between electricity consumption and different explanatory variables such as gender, age, region, family members, dwelling area, income, energy consumption awareness, external influencing factors, and household saving behavior. Job status is negative and significant, qualification variable in this study is insignificant, marital status is negatively associated with energy consumption and significant, size of a household has a significant effect on the model.  The monthly income of the household head has a positive and significant effect. Energy consumption awareness is significantly negative. External influencing factors are insignificant. Saving behavior in electronic appliances is significantly negative to energy consumption. Government should put efforts to aware the public about energy-saving measures through an awareness campaign using electronic media like mobile and email. Energy-saving appliances should be a sale at cheap prices. The household should have to change its habitual behavior.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


2021 ◽  
Vol 13 (6) ◽  
pp. 3380
Author(s):  
Marta Gangolells ◽  
Miquel Casals ◽  
Marcel Macarulla ◽  
Núria Forcada

This paper analyzes the impact of an innovative approach based on gamification to promote reduced energy consumption in social housing. The game was developed and validated under the auspices of the EU-funded project EnerGAware-Energy Game for Awareness of energy efficiency in social housing communities in an affordable housing pilot located in Plymouth (United Kingdom). The results showed that the future exploitation of the game holds important energy- and emissions-saving potential. Assuming that the game is distributed freely by European energy providers to their domestic end-users, the game was found to be able to save more than 48.9 secondary terawatt-hours per year (TWhs) and 18.8 million tons of CO2e annually, contributing up to around 8% to the target set for the European buildings sector to keep global warming under 2 °C. The results also showed that the game is highly feasible from the energy point of view, even when we consider the energy consumed upstream, due to its low cumulative energy demand and its potential for household energy reduction. The results of this research provide helpful information for private and public stakeholders, as they contribute to determining the sustainability of promoting energy saving through gaming.


2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Yasmin Fathy ◽  
Mona Jaber ◽  
Zunaira Nadeem

The Internet of Things (IoT) is revolutionising how energy is delivered from energy producers and used throughout residential households. Optimising the residential energy consumption is a crucial step toward having greener and sustainable energy production. Such optimisation requires a household-centric energy management system as opposed to a one-rule-fits all approach. In this paper, we propose a data-driven multi-layer digital twin of the energy system that aims to mirror households’ actual energy consumption in the form of a household digital twin (HDT). When linked to the energy production digital twin (EDT), HDT empowers the household-centric energy optimisation model to achieve the desired efficiency in energy use. The model intends to improve the efficiency of energy production by flattening the daily energy demand levels. This is done by collaboratively reorganising the energy consumption patterns of residential homes to avoid peak demands whilst accommodating the resident needs and reducing their energy costs. Indeed, our system incorporates the first HDT model to gauge the impact of various modifications on the household energy bill and, subsequently, on energy production. The proposed energy system is applied to a real-world IoT dataset that spans over two years and covers seventeen households. Our conducted experiments show that the model effectively flattened the collective energy demand by 20.9% on synthetic data and 20.4% on a real dataset. At the same time, the average energy cost per household was reduced by 10.7% for the synthetic data and 17.7% for the real dataset.


2021 ◽  
Vol 13 (11) ◽  
pp. 5843
Author(s):  
Mehdi Chihib ◽  
Esther Salmerón-Manzano ◽  
Mimoun Chourak ◽  
Alberto-Jesus Perea-Moreno ◽  
Francisco Manzano-Agugliaro

The COVID-19 pandemic has caused chaos in many sectors and industries. In the energy sector, the demand has fallen drastically during the first quarter of 2020. The University of Almeria campus also declined the energy consumption in 2020, and through this study, we aimed to measure the impact of closing the campus on the energy use of its different facilities. We built our analysis based upon the dataset collected during the year 2020 and previous years; the patterns evolution through time allowed us to better understand the energy performance of each facility during this exceptional year. We rearranged the university buildings into categories, and all the categories reduced their electricity consumption share in comparison with the previous year of 2019. Furthermore, the portfolio of categories presented a wide range of ratios that varied from 56% to 98%, the library category was found to be the most influenced, and the research category was found to be the least influenced. This opened questions like why some facilities were influenced more than others? What can we do to reduce the energy use even more when the facilities are closed? The university buildings presented diverse structures that revealed differences in energy performance, which explained why the impact of such an event (COVID-19 pandemic) is not necessarily relevant to have equivalent variations. Nevertheless, some management deficiencies were detected, and some energy savings measures were proposed to achieve a minimum waste of energy.


2020 ◽  
Vol 10 (20) ◽  
pp. 7123
Author(s):  
Ricardo Abejón ◽  
Jara Laso ◽  
Marta Rodrigo ◽  
Israel Ruiz-Salmón ◽  
Mario Mañana ◽  
...  

Recent studies have identified that buildings all over the world are great contributors to energy consumption and greenhouse gas emissions. The relationship between the building industry and environmental pollution is continuously discussed. The building industry includes many phases: extraction of raw materials, manufacturing, construction, use, and demolition. Each phase consumes a large amount of energy, and subsequent emissions are released. The life cycle energy assessment (LCEA) is a simplified version of the life cycle assessment (LCA) that focuses only on the evaluation of energy inputs for different phases of the life cycle. Operational energy is the energy required for day-to-day operation processes of buildings, such as heating, cooling and ventilation systems, lighting, as well as appliances. This use phase accounts for the largest portion of energy consumption of the life cycle of conventional buildings. In addition, energy performance certification of buildings is an obligation under current European legislation, which promotes efficient energy use, so it is necessary to ensure that the energy performance of the building is upgraded to meet minimum requirements. For this purpose, this work proposes the consideration of the energy impacts and material resources used in the operation phase of a building to calculate the contribution of these energy impacts as new variables for the energy performance certification. The application of this new approach to the evaluation of university buildings has been selected as a case study. From a methodological point of view, the approach relied on the energy consumption records obtained from energy and materials audit exercises with the aid of LCA databases. Taking into practice the proposed methodology, the primary energy impact and the related emissions were assessed to simplify the decision-making process for the energy certification of buildings. From the results obtained, it was concluded that the consumption of water and other consumable items (paper) are important from energy and environmental perspectives.


2019 ◽  
Vol 887 ◽  
pp. 335-343
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karaguler ◽  
Touraj Ashrafian

Energy efficiency has become a crucial part of human life, which has an adverse impact on the social and economic development of any country. In Turkey, it is a critical issue especially in the construction sector due to increase in the dependency on the fuel demands. The energy consumption, which is used during the life cycle of a building, is a huge amount affected by the energy demand for material and building construction, HVAC and lighting systems, maintenance, equipment, and demolition. In general, the Life Cycle Energy (LCE) needs of the building can be summarised as the operational and embodied energy together with the energy use for demolition and recycling processes.Besides, schools alone are responsible for about 15% of the total energy consumption of the commercial building sector. To reduce the energy use and CO2 emission, the operational and embodied energy of the buildings must be minimised. Overall, it seems that choosing proper architectural measures for the envelope and using low emitting material can be a logical step for reducing operational and embodied energy consumptions.This paper is concentrated on the operating and embodied energy consumptions resulting from the application of different architectural measures through the building envelope. It proposes an educational building with low CO2 emission and proper energy performance in Turkey. To illustrate the method of the approach, this contribution illustrates a case study, which was performed on a representative schoold building in Istanbul, Turkey. Energy used for HVAC and lighting in the operating phase and the energy used for the manufacture of the materials are the most significant parts of embodied energy in the LCE analyses. This case study building’s primary energy consumption was calculated with the help of dynamic simulation tools, EnergyPlus and DesignBuilder. Then, different architectural energy efficiency measures were applied to the envelope of the case study building. Then, the influence of proposed actions on LCE consumption and Life Cycle CO2 (LCCO2) emissions were assessed according to the Life Cycle Assessment (LCA) method.


2021 ◽  
Vol 13 (3) ◽  
pp. 1199
Author(s):  
Camilo Bravo-Orlandini ◽  
José M. Gómez-Soberón ◽  
Claudia Valderrama-Ulloa ◽  
Francisco Sanhueza-Durán

The energy consumption of buildings accounts for 22% of total global energy use and 13% of global greenhouse gas emissions. In this context, this study aims to evaluate the energy, economic, and environmental performance of housing in Chile built according to the Passivhaus (PH) standard. The standard was applied to housing in eight representative climate zones with a single-family residence as reference. The analysis incorporated passive strategies, which are considered as pillars of the PH. The energy performance was analyzed using the Passive House Planning Package software (PHPP), version 9.6a. The results showed that when every passive strategy is implemented, the heating energy demand decreases by 93%, while the refrigeration demand is nonexistent. These results were achieved through a 37% increase in the overall initial budget investment, which will be amortized over an 11-year period. In this way, the primary energy consumption is reduced by 32% and, correspondingly, CO2 emissions are reduced by 39%. In modern Chile, it is difficult (but not impossible) to incorporate PH. However, governmental programs and aids could represent an initial step. Therefore, this research will help to identify strategies for incorporating PH in Chile, with the aim of improving the energy performance of housing.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1565
Author(s):  
Anna Życzyńska ◽  
Dariusz Majerek ◽  
Zbigniew Suchorab ◽  
Agnieszka Żelazna ◽  
Václav Kočí ◽  
...  

The article assesses an impact of thermal retrofitting on an improvement of the energy quality of public buildings in terms of their heating. The analysis covered a group of 14 buildings, including schools, kindergartens or offices, while energy audits were carried out for 12 of them. The indications of individual gas meters were the source of actual data for the assessment of changes in energy consumption indexes in operating conditions. The analysis showed a clear improvement in the energy quality of buildings; however, the actual effects were much lower than forecasted. The average forecasted decrease in energy consumption was supposed to be 64.3%, but the measured data showed only 37.1%. The investigation confirmed that the most complex refurbishing provided the most satisfactory decrease in energy consumption (51.4% of real decrease in energy consumption), while objects with partial thermal refurbishing reached an efficiency of only 21.8%. It was stated that in operating conditions, special attention should be paid to the manner of energy use, since different indicators of energy consumption can be obtained with the same parameters of building’s balance cover. The results obtained can be further utilized in thermal-refurbishment implementation procedures. Follow-up investigations on the impact of selected parameters on energy consumption are planned.


2021 ◽  
Author(s):  
Tonima Ferdous

The project investigates potentials of building geometry to minimize energy consumption in office developments. Five distinct building geometries are developed to represent mid-size office occupancies in the context of Toronto (located at southern Ontario, Canada). A square, a rectangle elongated on eastwest, a rectangle elongated on north- south, an H-shape, and a cruciform are examined with varied design parameters; such as: window to wall ratio and external static solar control devices (horizontal overhangs and vertical fins). The IES VE software is applied to predict the yearly energy consumption results for 40 analysis permutations. The outcome of this research shows that, the deviation of energy use values from one shape to another is relatively small. In addition to that, window to wall ratio appears slightly overpowering on the energy use pattern of a building than its shape. Shading design is found particularly helpful in reducing cooling energy demand in offices spaces. Overall, the energy performance of five archetypes is observed to comply with individual building aspect ratios (i.e. compactness). Thus, the findings of this project are expected to provide useful guidelines to the architects to utilize building geometry as an energy saving measure when designing office buildings.


Sign in / Sign up

Export Citation Format

Share Document