scholarly journals New Multipath OLSR Protocol Version for Heterogeneous Ad Hoc Networks

2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Chaimae Benjbara ◽  
Ahmed Habbani ◽  
Nada Mouchfiq

From a basic refrigerator to a self-driving car, emerging technologies are increasingly involving various facets of our daily lives. These bring together many regularly used devices, each with its own characteristics, to communicate and collaborate within the same system. Computer network experts regard this so-called structure as a heterogeneous network made up of several connected objects that do not speak the same language. Communication is therefore ensured by additional types of nodes, such as gateways or converters. In this case, we can detect an increased complexity and a decreased level of security. And thus, the need to adopt a common slang for these kinds of networks has been brought to life. In this work, we compare two different routing protocols: optimized link-state routing (OLSR) and the multipath heterogeneous ad hoc network OLSR (MHAR-OLSR). The latter is an OLSR extension with new functionalities: nodes identification, paths calculation, paths classification, and paths choice that we designed for heterogeneous ad hoc networks composed of MANET, VANET, and FANET devices; it ensures direct communication between these diverse components. We verify and explain all the elements of our solution using colored Petri nets. We also present a global evaluation of Packet Delivery Ratio (PDR), End-To-End Delay, and energy consumption as QoS measures with different numbers of nodes in a heterogeneous scenario. To do this, we use NS-3 and BonnMotion as a tool-set of simulation. Experimental results show improvement in performance when compared to the classical routing protocol.

Author(s):  
Priyanka Bharadwaj ◽  
Surjeet Balhara

Background & Objective: There are some challenging issues such as providing Quality of Service (QoS), restricted usage of channels and shared bandwidth pertaining to ad-hoc networks in a dynamic topology. Hence, there is a requirement to support QoS for the application environment and multimedia services in ad-hoc networks with the fast growing and emerging development of information technology. Eventually, bandwidth is one of the key elements to be considered. Methods: Energy aware QoS routing protocol in an ad-hoc network is presented in this article. Results and Conclusion: The simulation results indicate that the improved protocol outperforms Adhoc On-Demand Distance Vector (AODV) routing protocol in terms of QoS metric such as throughput, packet delivery ratio, loss rate and average delay.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Author(s):  
Mannat Jot Singh Aneja ◽  
Tarunpreet Bhatia ◽  
Gaurav Sharma ◽  
Gulshan Shrivastava

This chapter describes how Vehicular Ad hoc Networks (VANETs) are classes of ad hoc networks that provides communication among various vehicles and roadside units. VANETs being decentralized are susceptible to many security attacks. A flooding attack is one of the major security threats to the VANET environment. This chapter proposes a hybrid Intrusion Detection System which improves accuracy and other performance metrics using Artificial Neural Networks as a classification engine and a genetic algorithm as an optimization engine for feature subset selection. These performance metrics have been calculated in two scenarios, namely misuse and anomaly. Various performance metrics are calculated and compared with other researchers' work. The results obtained indicate a high accuracy and precision and negligible false alarm rate. These performance metrics are used to evaluate the intrusion system and compare with other existing algorithms. The classifier works well for multiple malicious nodes. Apart from machine learning techniques, the effect of the network parameters like throughput and packet delivery ratio is observed.


Author(s):  
Raad Alturki ◽  
Rashid Mehmood

The HCPR scheme is implemented as an extension to the OPNET simulation software and is analysed in detail for its QoS performance to deliver multimedia applications over ad hoc networks. It is compared with three well-known and widely used routing protocols: Ad Hoc On Demand Distance Vector (AODV), Optimised Link State Routing (OLSR), and Geographic Routing Protocol (GRP). Several networking scenarios have been carefully configured with variations in networks sizes, applications, codecs, and routing protocols to extensively analyse the proposed scheme. The HCPR enabled ad hoc network outperforms the well-known routing schemes, in particular for relatively large networks and high QoS network loads. These results are promising because many QoS schemes do work for small networks and low network loads but are unable to sustain performance for large networks and high QoS loads. Several directions to extend this research for future work are given.


2009 ◽  
pp. 2996-3011
Author(s):  
S. Shanmugavel ◽  
C. Gomathy

As mobile computing gains popularity, the need for ad hoc routing also continues to grow. In mobile ad hoc networks, the mobility of nodes and error prone nature of the wireless medium pose many challenges, including frequent route changes and packet losses. Such problems increase the packet delays and decrease the throughput. To meet with the dynamic queuing behaviour of Ad hoc networks, to provide QoS and hence to improve the performance, a scheduler can be used. This chapter presents a novel fuzzy based priority scheduler for mobile ad-hoc networks, to determine the priority of the packets. The performance of this scheduler is studied using GloMoSim and evaluated in terms of quantitative metrics such as packet delivery ratio, average end-to-end delay and throughput.


Sign in / Sign up

Export Citation Format

Share Document