scholarly journals End-to-End Performance Evaluation of MEC Deployments in 5G Scenarios

2020 ◽  
Vol 9 (4) ◽  
pp. 57
Author(s):  
Antonio Virdis ◽  
Giovanni Nardini ◽  
Giovanni Stea ◽  
Dario Sabella

Multi-access edge computing (MEC) promises to deliver localized computing power and storage. Coupled with low-latency 5G radio access, this enables the creation of high added-value services for mobile users, such as in-vehicle infotainment or remote driving. The performance of these services as well as their scalability will however depend on how MEC will be deployed in 5G systems. This paper evaluates different MEC deployment options, coherent with the respective 5G migration phases, using an accurate and comprehensive end-to-end (E2E) system simulation model (exploiting Simu5G for radio access and Intel CoFluent for core network and MEC), taking into account user-related metrics, such as response time or MEC latency. Our results show that 4G radio access is going to be a bottleneck, preventing MEC services from scaling up. On the other hand, the introduction of 5G will allow a considerable higher penetration of MEC services.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 29525-29537 ◽  
Author(s):  
Xu Li ◽  
Rui Ni ◽  
Jun Chen ◽  
Yibo Lyu ◽  
Zhichao Rong ◽  
...  

2021 ◽  
Vol 27 (2) ◽  
pp. 78-85
Author(s):  
Ivaylo I. Atanasov ◽  
Evelina N. Pencheva

Network programmability and edge computing as key features of next generation communications enable innovative services. While the programmability is focused on the core network of the fifth-generation system, the edge computing moves the network intelligence to the radio access network. This paper presents a study on the programmability of connectivity control as a function of radio access network using Multi-access Edge Computing. The capability of using more than one radio access technology simultaneously enhances reliability and increases the throughput, especially in dense networks. Opening the radio access network interfaces for programmability of multi-connectivity enables analytics applications to control the device connections to multiple radio links simultaneously based on information of radio conditions, user location or specific policies. The research novelty is in opening the radio access network interfaces for edge applications to access connectivity control.


Author(s):  
Mickael Maman ◽  
Emilio Calvanese-Strinati ◽  
Lam Ngoc Dinh ◽  
Thomas Haustein ◽  
Wilhelm Keusgen ◽  
...  

AbstractPrivate networks will play a key role in 5G and beyond to enable smart factories with the required better deployment, operation and flexible usage of available resource and infrastructure. 5G private networks will offer a lean and agile solution to effectively deploy and operate services with stringent and heterogeneous constraints in terms of reliability, latency, re-configurability and re-deployment of resources as well as issues related to governance and ownership of 5G components, and elements. In this paper, we present a novel approach to operator models, specifically targeting 5G and beyond private networks. We apply the proposed operator models to different network architecture options and to a selection of relevant use cases offering mixed private–public network operator governance and ownership. Moreover, several key enabling technologies have been identified for 5G private networks. Before the deployment, stakeholders should consider spectrum allocation and on-site channel measurements in order to fully understand the propagation characteristic of a given environment and to set up end-to-end system parameters. During the deployment, a monitoring tools will support to validate the deployment and to make sure that the end-to-end system meet the target KPI. Finally, some optimization can be made individually for service placement, network slicing and orchestration or jointly at radio access, multi-access edge computing or core network level.


Author(s):  
Abubakar Muhammad Miyim ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin

The importance of network selection for wireless networks, is to facilitate users with various personal wireless devices to access their desired services via a range of available radio access networks. The inability of these networks to provide broadband data service applications to users poses a serious challenge in the wireless environment. Network Optimization has therefore become necessary, so as to accommodate the increasing number of users’ service application demands while maintaining the required quality of services. To achieve that, the need to incorporate intelligent and fast mechanism as a solution to select the best value network for the user arises. This paper provides an intelligent network selection strategy based on the user- and network-valued metrics to suit their preferences when communicating in multi-access environment. A user-driven network selection strategy that employs Multi-Access Service Selection Vertical Handover Decision Algorithm (MASS-VHDA) via three interfaces; Wi-Fi, WiMAX and LTE-A is proposed, numerically evaluated and simulated. The results from the performance analysis demonstrate some improvement in the QoS and network blocking probability to satisfy user application requests for multiple simultaneous services.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1339 ◽  
Author(s):  
Hasan Islam ◽  
Dmitrij Lagutin ◽  
Antti Ylä-Jääski ◽  
Nikos Fotiou ◽  
Andrei Gurtov

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol which is intended to be used for constrained networks and devices. CoAP and its extensions (e.g., CoAP observe and group communication) provide the potential for developing novel applications in the Internet-of-Things (IoT). However, a full-fledged CoAP-based application may require significant computing capability, power, and storage capacity in IoT devices. To address these challenges, we present the design, implementation, and experimentation with the CoAP handler which provides transparent CoAP services through the ICN core network. In addition, we demonstrate how the CoAP traffic over an ICN network can unleash the full potential of the CoAP, shifting both overhead and complexity from the (constrained) endpoints to the ICN network. The experiments prove that the CoAP Handler helps to decrease the required computation complexity, communication overhead, and state management of the CoAP server.


2021 ◽  
Vol 26 (3) ◽  
pp. 59-67
Author(s):  
Karolina CZERWIŃSKA ◽  
Michalene Eva GREBSKI

The study aimed to conduct a cost-value analysis of the production process of a newly introduced batch of external doors in the context of value-added creation and to identify redundant processes that do not create added value and for which appropriate corrective actions could contribute to their elimination. The result of applying improvement actions following the lean management concept was the optimization time nationalized analyzed by eliminating, among others, operations related to unnecessary transport and storage of products. In addition, the optimization production process impacted both shortening the process implementation time and reducing the costs of its implementation. Further activities will be related to the use of the presented methodology to analyze the processes implemented in the company in order to increase their efficiency.


Author(s):  
Ya. V. Kryukov ◽  
◽  
D. A. Pokamestov ◽  
E. V. Rogozhnikov ◽  
S. A. Novichkov ◽  
...  

Currently, an active deployment of radio access networks for mobile communication systems 5G New Radio is being observed. The architecture of networks is developing rapidly, where significant part of the functions is performed in a virtual cloud space of a personal computer. The computing power of a personal computer must be sufficient to execute network protocols in real time. To reduce the cost of deploying 5G NR networks, the configuration of each remote computer must be optimally matched to the scale of a particular network. Therefore, an urgent direction of research is the assessment of the execution time of the 5G NR protocol stack on various configurations of computers and the development of a mathematical model for data analysis, approximation of dependencies and making recommendations. In this paper, the authors provide an overview of the main 5G NR network architectures, as well as a description of the methods and tools that can be used to estimate the computational complexity of the 5G NR protocol stack. The final section provides an analysis of the computational complexity of the protocol stack, obtained during the experiments by colleagues in partner institutions.


Sign in / Sign up

Export Citation Format

Share Document