scholarly journals Study of the Operation Process of the E-Commerce Oriented Ecosystem of 5Ge Base Station, Which Supports the Functioning of Independent Virtual Network Segments

2021 ◽  
Vol 16 (7) ◽  
pp. 2883-2897
Author(s):  
Viacheslav Kovtun ◽  
Ivan Izonin

According to specifications, flexible services for traffic management should be implemented within the 5G platform in order to improve its efficiency, which is and will remain an actual task. For the first time, the article presented here proposes a mathematical model for the operation process of an e-commerce-oriented ecosystem of a 5Ge base station, the information environment of which supports the operation of independent virtual network segments that provide terminal–segment information interaction services. In contrast to existing models, the presented model describes the studied process as a multi-pipeline queuing system, the inputs of which are coordinated with the flows of requests for communication with the relevant virtual network segments. The distribution of the total resources between the weighted virtual network segments in the simulated system is dynamically conducted by the appropriate software control mechanism. It considers the address intensities of new incoming requests and the maintenance of received incoming requests, but throughout the scale of the information environment of the 5Ge base station ecosystem. Based on the created mathematical model, a functional algorithm for the forced termination of an active terminal–segment information interaction session in the overloaded virtual network segment and the control mechanism of the distribution of the released system resources between other virtual network segments that takes into account the degree of their overload are formulated. The simulation and computational experiments showed that the implemented forced termination algorithm and system resource management mechanism allow the 5Ge base station to continue receiving incoming requests despite the overload of individual virtual network segments. It is empirically shown that the proposed services are effectively scaled concerning the value that is generally available for the distribution of the number of system resources and the allocation method within the guaranteed amounts of system resources for individual virtual network segments.

The paper describes the main trends in the development of BIM technologies in the field of restoration and reconstruction of historical and cultural heritage buildings. The practical part of the paper presents the experience in using information modeling technologies when restoring the building, where the VI Congress of the Chinese Communist Party in Moscow took place. The use of laser scanning technologies made it possible to reproduce with high accuracy in the information model the original appearance of the building using Autodesk RevitR software. It is shown, how the use of information modeling technologies affects the duration of restoration process, taking into account the calculation of the structural scheme and bearing structures of the building, ensuring the identity of the decoration and the effective organization of electromechanical installation. Operating in a single BIM information environment makes it possible to continuously obtain reliable information on the project, which provides more effective information interaction and communication of participants compared to using traditional design methods.


2021 ◽  
Vol 336 ◽  
pp. 05030
Author(s):  
Liping Ge ◽  
Jinhe Zhou

To reduce the delay of content acquisition, this paper proposes a game-based cache allocation strategy in the Information-Centric Network (ICN) slice. The cache resource allocation of different mobile virtual network operators (MVNOs) is modeled as a non-cooperative game model. The Newton iterative method is used to solve this problem, and the cache space allocated by the base station for each MVNO is obtained. Finally, the Nash equilibrium solution is obtained. Simulation results show that the proposed algorithm can reduce the delay.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huifeng Wu ◽  
Junjie Hu ◽  
Jiexiang Sun ◽  
Danfeng Sun

There are millions of base stations distributed across China, each containing many support devices and monitoring sensors. Conventional base station management systems tend to be hosted in the cloud, but cloud-based systems are difficult to reprogram and performing tasks in real-time is sometimes problematic, for example, sounding a combination of alarms or executing linked tasks. To overcome these drawbacks, we propose a hybrid edge-cloud IoT base station system, called BSIS. This paper includes a theoretical mathematical model that demonstrates the dynamic characteristics of BSIS along with a formulation for implementing BSIS in practice. Embedded programmable logic controllers serve as the edge nodes; a dynamic programming method creates a seamless integration between the edge nodes and the cloud. The paper concludes with a series of comprehensive analyses on scalability, responsiveness, and reliability. These analyses indicate a possible 60% reduction in the number of alarms, an edge response time of less than 0.1s, and an average downtime ratio of 0.66%.


1996 ◽  
Vol 16 (1) ◽  
pp. 430-436 ◽  
Author(s):  
H P Ko ◽  
S T Okino ◽  
Q Ma ◽  
J P Whitlock

We have analyzed the dioxin-inducible transcriptional control mechanism for the mouse CYP1A1 gene in its native chromosomal context. Our genetic and biochemical studies indicate that a C-terminal segment of the aromatic hydrocarbon receptor (AhR) contains latent transactivation capability and communicates the induction signal from enhancer to promoter. Thus, transactivation and enhancer-promoter communication may be congruent functions of AhR. Both functions require heterodimerization between AhR and the AhR nuclear translocator (Arnt). Our findings also indicate that heterodimerization activates AhR's latent transactivation function and silences that of Arnt. Furthermore, removal of Arnt's transactivation domain does not affect dioxin-induced CYP1A1 transcription in vivo. In addition, our studies demonstrate that dioxin-induced changes in chromatin structure occur by different mechanisms at the CYP1A1 enhancer and promoter and that events at an enhancer can be experimentally dissociated from events at the cognate promoter during mechanistic analyses of mammalian transcription in vivo.


2003 ◽  
Vol 21 (8) ◽  
pp. 1254-1262 ◽  
Author(s):  
K. Shiomoto ◽  
E. Oki ◽  
W. Imajuku ◽  
S. Okamoto ◽  
N. Yamanaka

Author(s):  
Neeraj Kumar ◽  
R.B. Patel

In a wireless sensor network (WSN), the sensor nodes obtain data and communicate its data to a centralized node called base station (BS) using intermediate gateway nodes (GN). Because sensors are battery powered, they are highly energy constrained. Data aggregation can be used to combine data of several sensors into a single message, thus reducing sensor communication costs and energy consumption. In this article, the authors propose a QoS aware framework to support minimum energy data aggregation and routing in WSNs. To minimize the energy consumption, a new metric is defined for the evaluation of the path constructed from source to destination. The proposed QoS framework supports the dual goal of load balancing and serving as an admission control mechanism for incoming traffic at a particular sensor node. The results show that the proposed framework supports data aggregation with less energy consumption than earlier strategies.


Sign in / Sign up

Export Citation Format

Share Document