scholarly journals Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 973
Author(s):  
Christos Polykretis ◽  
Manolis G. Grillakis ◽  
Athanasios V. Argyriou ◽  
Nikos Papadopoulos ◽  
Dimitrios D. Alexakis

Over the last few years, landslides have occurred more and more frequently worldwide, causing severe effects on both natural and human environments. Given that landslide susceptibility (LS) assessments and mapping can spatially determine the potential for landslides in a region, it constitutes a basic step in effective risk management and disaster response. Nowadays, several LS models are available, with each one having its advantages and disadvantages. In order to enhance the benefits and overcome the weaknesses of individual modeling, the present study proposes a hybrid LS model based on the integration of two different statistical analysis models, the multivariate Geographical Detector (GeoDetector) and the bivariate information value (IV). In a GIS-based framework, the hybrid model named GeoDIV was tested to generate a reliable LS map for the vicinity of the Pinios artificial lake (Ilia, Greece), a Greek wetland. A landslide inventory of 60 past landslides and 14 conditioning (morphological, hydro-lithological and anthropogenic) factors was prepared to compose the spatial database. An LS map was derived from the GeoDIV model, presenting the different zones of potential landslides (probability) for the study area. This map was then validated by success and prediction rates—which translate to the accuracy and prediction ability of the model, respectively. The findings confirmed that hybrid modeling can outperform individual modeling, as the proposed GeoDIV model presented better validation results than the IV model.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Yang Li ◽  
Wei Chen

In this study, Random SubSpace-based classification and regression tree (RSCART) was introduced for landslide susceptibility modeling, and CART model and logistic regression (LR) model were used as benchmark models. 263 landslide locations in the study area were randomly divided into two parts (70/30) for training and validation of models. 14 landslide influencing factors were selected, such as slope angle, elevation, aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to road, soil, normalized difference vegetation index (NDVI), land use, and lithology. Finally, the hybrid RSCART model and two benchmark models were applied for landslide susceptibility modeling and the receiver operating characteristic curve method is used to evaluate the performance of the model. The susceptibility is quantitatively compared based on each pixel to reveal the system spatial pattern between susceptibility maps. At the same time, area under ROC curve (AUC) and landslide density analysis were used to estimate the prediction ability of landslide susceptibility map. The results showed that the RSCART model is the optimal model with the highest AUC values of 0.852 and 0.827, followed by LR and CART models. The results also illustrate that the hybrid model generally improves the prediction ability of a single landslide susceptibility model.


2013 ◽  
Vol 57 (3) ◽  
pp. 371-385 ◽  
Author(s):  
Gabriel Legorreta Paulín ◽  
Marcus Bursik ◽  
María Teresa Ramírez-Herrera ◽  
Trevor Contreras ◽  
Michael Polenz ◽  
...  

2021 ◽  
Vol 14 (11) ◽  
pp. 44-56
Author(s):  
Abhijit S. Patil ◽  
Bidyut K. Bhadra ◽  
Sachin S. Panhalkar ◽  
Sudhir K. Powar

Almost every year, the Himalayan region suffers from a landslide disaster that is directly associated with the prosperity and development of the area. The study of landslide disasters helps planners, decision-makers and local communities for the development of anthropogenic structures in order to enhance the safety of society. Therefore, the prime aim of this research is to produce the landslide susceptibility map for the Chenab river valley using the bi-variate statistical information value model to detect and demarcate the areas of potential landslide incidence. The object-based image analysis method identified about 84 potential sites of landslides as landslide inventory. The statistical information value model is derived from the landslide inventory and multiple causative factors. The outcome showed that 23% area of the Chenab river valley falls into the class of a very high landslide susceptibility zone. The ROC curve method is used to validate the model which denoted the acceptable result for the landslide susceptibility zonation with 0.826 AUC value for the Chenab river valley.


2021 ◽  
Vol 13 (1) ◽  
pp. 1668-1688
Author(s):  
Azemeraw Wubalem ◽  
Gashaw Tesfaw ◽  
Zerihun Dawit ◽  
Belete Getahun ◽  
Tamrat Mekuria ◽  
...  

Abstract The flood is one of the frequently occurring natural hazards within the sub-basin of Lake Tana. The flood hazard within the sub-basin of Lake Tana causes damage to cropland, properties, and a fatality every season. Therefore, flood susceptibility modeling in this area is significant for hazard reduction and management purposes. Thus, the analytical hierarchy process (AHP), bivariate (information value [IV] and frequency ratio [FR]), and multivariate (logistic regression [LR]) statistical methods were applied. Using an intensive field survey, historical document, and Google Earth Imagery, 1,404-flood locations were determined, classified into 70% training datasets and 30% testing flood datasets using a subset within the geographic information system (GIS) environment. The statistical relationship between the probability of flood occurrence and 11 flood-driving factors was performed using the GIS tool. The flood susceptibility maps of the study area were developed by summing all weighted aspects using a raster calculator. It is classified into very low, low, moderate, high, and very high susceptibility classes using the natural breaks method. The accuracy and performance of the models were evaluated using the area under the curve (AUC). As the result indicated, the FR model has better performance (AUC = 99.1%) compared to the AHP model (AUC = 86.9%), LR model (AUC = 81.4%), and IV model (AUC = 78.2%). This research finds out that the applied methods are quite worthy for flood susceptibility modeling within the study area. In flood susceptibility modeling, method selection is not a serious challenge; the care should tend to the input parameter quality. Based on the AUC values, the FR model is comparatively better, followed by the AHP model for regional land use planning, flood hazard mitigation, and prevention purposes.


2019 ◽  
Vol 9 (18) ◽  
pp. 3755 ◽  
Author(s):  
Wei Chen ◽  
Haoyuan Hong ◽  
Mahdi Panahi ◽  
Himan Shahabi ◽  
Yi Wang ◽  
...  

The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.


2019 ◽  
Vol 19 (8) ◽  
pp. 1881-1893 ◽  
Author(s):  
Ahangama Kankanamge Rasika Nishamanie Ranasinghe ◽  
Ranmalee Bandara ◽  
Udeni Gnanapriya Anuruddha Puswewala ◽  
Thilantha Lakmal Dammalage

Abstract. Through the recent technological developments of radar and optical remote sensing in (i) the areas of temporal, spectral, spatial, and global coverage; (ii) the availability of such images either at a low cost or free of charge; and (iii) the advancement of tools developed in image analysis techniques and GIS for spatial data analysis, there is a vast potential for landslide studies using remote sensing and GIS as tools. Hence, this study aimed to assess the efficacy of using radar-derived factors (RDFs) in identifying landslide susceptibility using the bivariate information value method (InfoVal method) and the multivariate multi-criteria decision analysis based on the analytic hierarchy process statistical analysis. Using identified landslide causative factors, four landslide prediction models – bivariate with and without RDFs as well as multivariate with and without RDFs – were generated. Twelve factors such as topographical, hydrological, geological, land cover and soil plus three RDFs are considered. The weight of index for landslide susceptibility is calculated by using the landslide failure map, and susceptibility regions are categorized into four classes as very low, low, moderate, and high susceptibility to landslides. With the integration of RDFs, boundary detection between high- and very-low-susceptibility regions are increased by 7 % and 4 % respectively.


Geosciences ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 261 ◽  
Author(s):  
Christos Polykretis ◽  
Antigoni Faka ◽  
Christos Chalkias

The main purpose of this study is to explore the impact of analysis scale on the performance of a quantitative model for landslide susceptibility assessment through empirical analyses in the northern Peloponnese, Greece. A multivariate statistical model like logistic regression (LR) was applied at two different scales (a regional and a more detailed scale). Due to this scale difference, the implementation of the model was based on two landslide inventories representing in a different way the landslide occurrence (as point and polygon features), and two datasets of similar geo-environmental factors characterized by a different size of grid cells (90 m and 20 m). Model performance was tested by a standard validation method like receiver operating characteristics (ROC) analysis. The validation results in terms of accuracy (about 76%) and prediction ability (Area under the Curve (AUC) = 0.84) of the model revealed that the more detailed scale analysis is more appropriate for landslide susceptibility assessment and mapping in the catchment under investigation than the regional scale analysis.


Sign in / Sign up

Export Citation Format

Share Document