scholarly journals Spatio-Temporal Patterns of Increasing Illegal Livestock Grazing over Three Decades at Moyowosi Kigosi Game Reserve, Tanzania

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1325
Author(s):  
Nyangabo V. Musika ◽  
James V. Wakibara ◽  
Patrick A. Ndakidemi ◽  
Anna C. Treydte

The global increase of livestock has caused illegal intrusion of livestock into protected areas. Until now, hotspot areas of illegal grazing have rarely been mapped, long-term monitoring data are missing, and little is known about the drivers of illegal grazing. We localized hotspots of illegal grazing and identified factors that influenced spatio-temporal patterns of illegal grazing over three decades in the Moyowosi Kigosi Game Reserve (MKGR), Tanzania. We used questionnaires with local pastoralists (N = 159), georeferenced aerial survey data and ranger reports from 1990–2019 to understand the reasons for illegal grazing in the area. We found that hotspots of illegal grazing occurred initially within 0–20 km of the boundary (H (3) = 137, p < 0.001; (H (3) = 32, p < 0.001) and encroached further into the protected area with time (H (3) = 11.3, p = 0.010); (H (2) = 59.0, p < 0.001). Further, livestock herd sizes decreased with increasing distance from the boundary (R = −0.20, p = 0.020; R = −0.40, p = 0.010). Most interviewees (81%) claimed that they face challenges of reduced foraging land in the wet season, caused by increasing land used for cultivation, which drives them into the MKGR to feed their livestock. We conclude that there is spatio-temporal consistency in the illegal livestock intrusion over three decades, and hotspot areas are located along the boundary of the MKGR. We suggest focusing patrols at these hotspot areas, especially during the wet season, to use limited law enforcement resources effectively.

2003 ◽  
Vol 358 (1432) ◽  
pp. 689-693 ◽  
Author(s):  
Toshiyuki Hosokawa ◽  
Masaki Ohta ◽  
Takeshi Saito ◽  
Alan Fine

Spatio-temporal patterns of neuronal activity before and after the induction of long-term potentiation in mouse hippocampal slices were studied using a real-time high-resolution optical recording system. After staining the slices with voltage-sensitive dye, transmitted light images and extracellular field potentials were recorded in response to stimuli applied to CA1 stratum radiatum. Optical and electrical signals in response to single test pulses were enhanced for at least 30 minutes after brief high-frequency stimulation at the same site. In two-pathway experiments, potentiation was restricted to the tetanized pathway. The optical signals demonstrated that both the amplitude and area of the synaptic response were increased, in patterns not predictable from the initial, pretetanus, pattern of activation. Optical signals will be useful for investigating spatio-temporal patterns of synaptic enhancement underlying information storage in the brain.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 354 ◽  
Author(s):  
Yawen Kong ◽  
Baozhang Chen ◽  
Simon Measho

The global carbon cycle research requires precise and sufficient observations of the column-averaged dry-air mole fraction of CO 2 (XCO 2 ) in addition to conventional surface mole fraction observations. In addition, assessing the consistency of multi-satellite data are crucial for joint utilization to better infer information about CO 2 sources and sinks. In this work, we evaluate the consistency of long-term XCO 2 retrievals from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2) in comparison with Total Carbon Column Observing Network (TCCON) and the 3D model of CO 2 mole fractions data from CarbonTracker 2017 (CT2017). We create a consistent joint dataset and compare it with the long-term model data to assess their abilities to characterize the carbon cycle climate. The results show that, although slight increasing differences are found between the GOSAT and TCCON XCO 2 in the northern temperate latitudes, the GOSAT and OCO-2 XCO 2 retrievals agree well in general, with a mean bias ± standard deviation of differences of 0.21 ± 1.3 ppm. The differences are almost within ±2 ppm and are independent of time, indicating that they are well calibrated. The differences between OCO-2 and CT2017 XCO 2 are much larger than those between GOSAT and CT XCO 2 , which can be attributed to the significantly different spatial representatives of OCO-2 and the CT-transport model 5 (TM5). The time series of the combined OCO-2/GOSAT dataset and the modeled XCO 2 agree well, and both can characterize significantly increasing atmospheric CO 2 under the impact of a large El Niño during 2015 and 2016. The trend calculated from the dataset using the seasonal Kendall (S-K) method indicates that atmospheric CO 2 is increasing by 2–2.6 ppm per year.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anna Krumpel ◽  
Ally Rice ◽  
Kaitlin E. Frasier ◽  
Fairlie Reese ◽  
Jennifer S. Trickey ◽  
...  

Acoustic deterrents can reduce marine mammal interactions with fisheries and aquacultures, but they contribute to an increasing level of underwater noise. In Southern California, commercially produced explosive deterrents, commonly known as “seal bombs,” are used to protect fishing gear and catch from pinniped predation, which can cause extensive economic losses for the fishing community. Passive acoustic monitoring data collected between 2005 and 2016 at multiple sites within the Southern California Bight and near Monterey Bay revealed high numbers of these small-charge underwater explosions, long-term, spatio-temporal patterns in their occurrence, and their relation to different commercial purse-seine fishing sectors. The vast majority of explosions occurred at nighttime and at many nearshore sites high explosion counts were detected, up to 2,800/day. Received sound exposure levels of up to 189 dB re 1 μPa2-s indicate the potential for negative effects on marine life, especially in combination with the persistence of recurring explosions during periods of peak occurrence. Due to the highly significant correlation and similar spatio-temporal patterns of market squid landings and explosion occurrence at many sites, we conclude that the majority of the recorded explosions come from seal bombs being used by the California market squid purse-seine fishery. Additionally, seal bomb use declined over the years of the study, potentially due to a combination of reduced availability of market squid driven by warm water events in California and regulation enforcement. This study is the first to provide results on the distribution and origin of underwater explosions off Southern California, but there is a substantial need for further research on seal bomb use in more recent years and their effects on marine life, as well as for establishing environmental regulations on their use as a deterrent.


Sign in / Sign up

Export Citation Format

Share Document