scholarly journals Emerging Mutations Potentially Related to SARS-CoV-2 Immune Escape: The Case of a Long-Term Patient

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1259
Author(s):  
Loredana Capozzi ◽  
Domenico Simone ◽  
Angelica Bianco ◽  
Laura Del Sambro ◽  
Valeria Rondinone ◽  
...  

SARS-CoV-2 isolates from long-term COVID-19 patients play a significant role in understanding the mechanisms of infection and virus persistence. This study describes a SARS-CoV-2 isolate from a 53-year-old woman from Apulia (Italy), who was COVID-19 positive for approximately four months. In this paper we aimed to investigate any potential correlation between genetic mutations and clinical features of this case of infection. The viral isolate was assigned to lineage B.1.177.51 through whole-genome sequencing (WGS) and harbored a novel set of mutations on the Spike protein (V143D, del144/145 and E484K); furthermore, seroneutralization assays showed impaired response of the surveyed strain to BNT162b2 (Comirnaty) Pfizer/BioNTech vaccine-induced (average reduction of 70%) and convalescent sera (average reduction of 19.04%), when compared to VOC P.1. This study highlights the importance of genomic surveillance for the management of the COVID-19 pandemic, the relevance of monitoring of emerging SARS-CoV-2 mutations in all lineages, and the necessity of testing the response of emerging variants to available therapies and vaccines.

2021 ◽  
Author(s):  
Pallavali Roja Rani ◽  
Mohamed Imran ◽  
Juturu Vijaya Lakshmi ◽  
Bani Jolly ◽  
Abhinav Jain ◽  
...  

Here we describe a case of re-infection in an individual from South India characterized by whole genome sequencing of the virus isolated from both episodes. The analysis shows the presence of an immune escape variant N440K in the Spike protein in both episodes of infection. Incidentally, this variant was also found in a case of reinfection previously reported by us in a healthcare worker from North India


Author(s):  
Kelvin Kai-Wang To ◽  
Xin Li ◽  
David Christopher Lung ◽  
Jonathan Daniel Ip ◽  
Wan-Mui Chan ◽  
...  

Abstract A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi227-vi227
Author(s):  
Malte Mohme ◽  
Cecile Maire ◽  
Simon Schliffke ◽  
Simon Joosse ◽  
Malik Alawi ◽  
...  

Abstract Glioblastoma (GBM) has a devastating prognosis and recent advances in the treatment of a variety of cancer entities, e.g. through checkpoint inhibition, could so far not be translated into improved outcome in newly-diagnosed GBM. Characterizing rare cases of peripheral metastases which succeeded in overcoming immune control, can help to understand the mechanisms of immune escape. Here we describe the first reported case of a detailed genetic and immunological characterization of a peripheral bone metastasis from a GBM which was controlled intracranially by anti-PD1 checkpoint inhibition We performed whole genome sequencing (WGS) of the primary- and recurrent tumor, as well as the bone metastasis. Genomic data was analyzed for copy number variations and mutational profiles. In addition, immune monitoring with flow cytometric phenotyping and next-generation sequencing of the peripheral T-cell repertoire was used. A 70-year old patient developed multiple osseous metastases in the spine, while his IDHwt GBM recurrence was immunologically controlled with checkpoint inhibition. Biopsy confirmed peripheral GBM metastases. Immunophenotyping reflected the effective activation of the peripheral T-cell response, with, however, simultaneous upregulation of regulatory T-cells during disease progression. WGS sequencing demonstrated a distinct molecular profile of the GBM metastasis, with amplifications in chromosome 3 and 9, as well as genomic loss on chromosomes 4, 10 and 11. The peripheral metastasis was distinguished by mutations in mismatch repair genes, such as MSH4 and MLH1, associated with a hypermutated phenotype. Among the mutated genes we found potential candidates involved in immune escape of circulating tumor cells. This case represents a unique opportunity to analyze potential mechanisms of GBM-mediated immune escape during immune activation with anti-PD1 checkpoint therapy. It highlights the fact, that although an effective, disinhibited immune response can control the cranial GBM disease, hypermutated tumor clones can evade the tumor-specific T-cell response and disseminate to distant organs.


2018 ◽  
Vol 65 ◽  
pp. 200-209 ◽  
Author(s):  
Megan Wells ◽  
Erica Lasek-Nesselquist ◽  
Dianna Schoonmaker-Bopp ◽  
Deborah Baker ◽  
Lisa Thompson ◽  
...  

2021 ◽  
Author(s):  
Sai Narayanan ◽  
Girish Patil ◽  
Sunil More ◽  
Jeremiah Saliki ◽  
Anil Kaul ◽  
...  

AbstractWe describe the detection of SARS-CoV-2 (VOC)B.1.1.7 lineage in Oklahoma, USA. Various mutations in the S gene and ORF8 with similarity to the genome of B.1.1.7 lineage were detected in 4 of the 6 genomes sequenced and reported here. The sequences have been made available in GISAID. Presence of novel lineages indicate the need for frequent whole genome sequencing to better understand pathogen dynamics in different geographical locations.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


2021 ◽  
Vol 9 (9) ◽  
pp. 1985
Author(s):  
Alessandra Piccirilli ◽  
Sabrina Cherubini ◽  
Anna Azzini ◽  
Evelina Tacconelli ◽  
Giuliana Lo Cascio ◽  
...  

K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common β-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6′)-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread β-lactamase.


2021 ◽  
Author(s):  
José Afonso Guerra-Assunção ◽  
Paul A. Randell ◽  
Florencia A. T. Boshier ◽  
Michael A. Crone ◽  
Juanita Pang ◽  
...  

AbstractThe appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3813-3813
Author(s):  
Michael Spencer Chapman ◽  
C. Matthias Wilk ◽  
Steffen Boettcher ◽  
Larisa V. Kovtonyuk ◽  
Emily Mitchell ◽  
...  

Abstract Allogeneic haematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for over 40,000 patients/year in Europe and the US alone. However, substantial treatment-related mortality and morbidity, as well as risks of disease relapse give a survival rate of about 50% and leave considerable room for improvement. Despite being an established treatment for over 50 years, fundamental questions remain regarding its biology. For example, how many of the frequently &gt;100 million transplanted CD34+ cells are true haematopoietic stem cells (HSCs), determined by long-term engraftment and contribution to multi-lineage hematopoiesis (long-term engrafting HSCs [LTE-HSCs])? What are the mutational consequences for transplanted HSCs given their proliferation and potential mutagenic insults in the post-transplant period? Most recently, the discovery of clonal haematopoiesis (CH) has raised interest in the interaction between this and HSCT. Do such clones further expand during HSCT? This may potentially lead to the devastating complication of donor-cell leukemia or other CH-related risks, e.g. cardiovascular disease. Recently, some studies have addressed this using targeted sequencing panels for myeloid cancer genes. However, many clonal expansions in normal blood are not driven by mutations in such genes, with evidence suggesting that the set of potential 'driver' genes is much larger than currently recognized (Poon et al, bioRXiv 2020). Advances in HSC tracking methodologies - using naturally-occurring somatic mutations as clonal markers (Lee-Six et al, Nature 2018) - provide a powerful tool to simultaneously address these questions. Whole-genome sequencing of hundreds of single-cell derived haematopoietic stem and progenitor cell (HSPC) colonies from a single individual is used to compile a complete set of somatic mutations in each colony founder cell, and the pattern of shared mutations amongst cells used to infer their phylogeny or 'family tree'. The constant rate of mutation acquisition during post-development life allows estimation of the timing of mutation acquisition. Using phylodynamic approaches borrowed from pathogen biology, patterns of branching points can be used to infer important parameters such as the size of population 'bottlenecks' (in this context the number of LTE-HSCs), and the growth dynamics of expanded clones. We selected 7 donor/ recipient (D/ R) pairs who had undergone HSCT 9-31 years previously. For each individual (D and R), peripheral blood CD34+ HSPC-derived colonies were grown on methylcellulose medium. Whole-genome sequencing (WGS) was performed on 100-300 colonies per individual - a total of 2,278 genomes. Mutations were called using established pipelines, then filtered to remove artefacts, germline variants, and in vitro mutations leaving only somatically-acquired mutations. Phylogenies for each D/R pair were inferred, using a maximum parsimony algorithm. Mutational signatures were extracted using a hierarchical dirichlet process. D/R phylogenies were compared using metrics of phylogenetic diversity. Clonal fractions of expanded clones in D/R were compared. Approximate Bayesian computation was used to estimate numbers of LTE-HSCs. Our results reveal that HSCT engraftment is remarkably polyclonal, with thousands of transplanted HSCs (in most cases &gt;5,000) actively contributing to haematopoiesis decades after transplant. HSCs suffer little consequence in terms of their somatic mutation burden. Recipient haematopoiesis showed decreased clonal diversity compared to their donors with a mean 20% decrease of the Shannon's Diversity Index. This may partly result from increased selective pressures during HSCT. Intriguingly, several DNMT3A-driven expansions seen in donors had lower clonal fractions in recipients. Conversely, clones with &gt;1 driver mutation (e.g. DNMT3A/CHEK2) showed larger expansions in recipients compared to donors, despite originating in the donor. DNMT3A mutations frequently originated in early development - in one case occurring in utero. We demonstrate the power of applying a novel clonal tracking approach to HSCT, for the first time giving a detailed picture of the clonal dynamics of engraftment. Overall, our findings are reassuring from a safety perspective, but the different clonal composition in recipients merits further investigation to better understand the factors involved. Disclosures Manz: University of Zurich: Patents & Royalties: CD117xCD3 TEA; CDR-Life Inc: Consultancy, Current holder of stock options in a privately-held company. Campbell: Mu Genomics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document