scholarly journals Wnt Signaling Pathway Is among the Drivers of Liver Metastasis

Livers ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 180-200
Author(s):  
Ivana Samaržija

Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.

2019 ◽  
Vol 10 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Bornita Das ◽  
Dona Sinha

DADS reflected the potential of reversal of FN-induced EMT by inhibition of Wnt signaling in A549 lung cancer cells.


2021 ◽  
pp. FSO747
Author(s):  
Neeti Sharma ◽  
Piyush W Raut ◽  
Meghna M Baruah ◽  
Akshay Sharma

Aim: We have previously reported that quercetin (Qu) regulates epithelial–mesenchymal transition (EMT) by modulating Wnt signaling components. In this study, we investigated the synergistic effect of Qu and 2-methoxyestradiol (2-ME) and the role of Wnt signaling components in regulating EMT in PC-3 cells. Materials & methods: EMT was induced by treating PC-3 cells with TGF-β, followed by evaluation of expression of EMT markers and Wnt signaling proteins in naive, induced and after exposing induced cells to Qu and 2-ME at both gene and protein level by real-time PCR (RT-PCR) and western blot, respectively. Results: Qu and 2-ME synergistically downregulated mesenchymal markers with simultaneous upregulation of epithelial markers. Wnt signaling proteins expression was also downregulated by Qu and 2-ME in TGF-β-induced EMT in PC-3 cells. Conclusion: Thus, combination therapy of Qu and 2-ME could be a new promising therapeutic approach for the treatment of prostate cancer.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 555 ◽  
Author(s):  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Takahiro Kanno

As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial–mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.


2015 ◽  
Vol 36 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yoshimitsu Yanaka ◽  
Tomoki Muramatsu ◽  
Hiroyuki Uetake ◽  
Ken-ichi Kozaki ◽  
Johji Inazawa

Sign in / Sign up

Export Citation Format

Share Document