scholarly journals Study of the Effect of Curing Residual Stress on the Bonding Strength of the Single Lap Joint Using a High-Temperature Phosphate Adhesive

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1198 ◽  
Author(s):  
Chengkun Ma ◽  
Yuan Tian ◽  
Yan Gong ◽  
Jifeng Zhang ◽  
Hui Qi ◽  
...  

High-temperature phosphate adhesives are widely used in the aerospace and nuclear power industries. However, complex residual stresses can result when the curing temperature parameters are unreasonable due to the brittleness of the adhesive. To reveal the curing temperature mechanism affecting the bonding strength of the phosphate adhesives, several curing temperature curves (CT-1~6) were designed for the single lap joint (SLJ) using phosphate adhesive. The residual stress helped to reveal the relationship between the curing temperature parameters and the bonding performance. In this process, the residual stress of the silicon carbide joint was measured using micro-Raman spectroscopy, and the tensile strength of the joint was tested. A cohesive zone model (CZM) was established with Abaqus® to verify the results, and the numerical results from the model agreed well with the experimental values. The residual stress and adhesive strength were obviously affected by curing temperature. The reasonable curing temperature curves have the benefits of reducing the residual stress and improving the bonding strength.

2010 ◽  
Vol 654-656 ◽  
pp. 1928-1931
Author(s):  
Jun Zhang ◽  
Yong Cheng Lin ◽  
Xin Li Wei ◽  
Liu Gang Huang

A modified cohesive zone interface model with a damage factor was proposed to describe the effects of the thermal cycle and humidity aging on the strengths of adhesive joints. The damage factor can not only change the cohesive zone bonding strength but also affect the energies of separation. The modified cohesive zone interfacial model, as a user subroutine, is developed and implemented in ABAQUS to simulate the 90° peeling process of the specimens, which were bonded by anisotropic conducive adhesive film (ACF) and subjected to the cycle and humidity aging tests. The numerical simulated results well agree with experimental results, which confirmed the validity of the new model.


2020 ◽  
Vol 55 (1) ◽  
pp. 137-144
Author(s):  
Ghalib R Ibrahim ◽  
A Albarbar ◽  
Khaldoon F Brethee

A cohesive zone model for delamination propagation in laminated composites under static and fatigue loading has been derived and validated with experimental data under different mode conditions. This study presents a new approach to quantify fatigue delamination degradation based on damage mechanics to evaluate the rate of fatigue damage ([Formula: see text]). The static damage evaluation and fatigue damage degradation are derived from damage surface concept. Both static and fatigue damage linked each other to establish fatigue crack growth formula in the laminated composites. A user-defined subroutine, UMAT, has been employed to develop and implement a damage model in ABAQUS. Two different specimens; a double cantilever beam and a single lap joint were used to investigate the effectiveness of the new method. The simulation results revealed that the developed model had good agreement with experimental data available in literature.


2001 ◽  
Author(s):  
K. Minnaar ◽  
M. Zhou

Abstract A new experimental technique is developed to determine the onset and evolution of delamination in fiber-reinforced composites. The configuration uses a split-Hopkinson bar for low-velocity impact loading and two Polytec laser vibrometer systems for real-time monitoring of the initiation and progression of delamination. The experiment allows the histories of load, displacement, and velocity of impacted specimens to be recorded and analyzed. Numerical simulations are conducted using a cohesive finite element method. The method employs a cohesive zone model to simulate in-ply cracking and interlaminar delamination and a transversely isotropic, elastic model to characterize the bulk behavior of each ply. The simulations provide time-resolved characterization of damage during the impact loading. The time at which delamination is detected decreases as the impact velocity is increased, and delamination is detected at similar surface displacements. The progression of damage changes as the bonding strength between plies is increased. The speed of delamination decreases as the bonding strength is increased.


2020 ◽  
Vol 70 (4) ◽  
pp. 503-511
Author(s):  
Priyashnie Govender ◽  
B. M. Majeke ◽  
Abiodun Oluseun Alawode ◽  
Johans F. Gorgens ◽  
Luvuyo Tyhoda

Abstract This study aims to investigate the potential of using lignin sourced from South African black liquor as a total phenol substitute in phenol-formaldehyde resins (PFRs), with a particular focus on bonding strength and curing properties. Four South African pulping-based lignins were used to synthesize these lignin-phenol formaldehyde resins (LPF100 resins), namely Eucalyptus Kraft lignin, Pine Kraft lignin, Bagasse Soda lignin, and Bagasse Steam Exploded lignin. Fourier-transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry were used to determine structural and curing properties. These resins were then used directly (unmodified) as adhesives to test shear bonding strength (R0 LPF100 adhesives). To improve the bonding properties of the unmodified LPF100 adhesives, the LPF100 resins were modified via the addition of a crosslinker (hexamine) as well as a hardener (either glyoxal, R1, or epichlorohydrin, R2). All R0 LPF100 adhesives fell below the GB/T 17657-2013 plywood standard of ≥0.7 MPa, with the Bagasse Soda LPF100 adhesive recording the highest bonding performance of 0.5 MPa, and the lowest curing temperature of 68°C. From the modified adhesives, the best performing were the Pine Kraft (R1) and the Eucalyptus Kraft (R2) LPF100 adhesives, recording 1.4 and 1.3 MPa, respectively. The curing temperatures of both these resins were 71°C and 80°C, respectively. Ultimately, the results of this study indicated that favorable adhesive properties may be obtained with the use of South African pulping-based lignins as a 100 percent phenol substitute in PFRs.


2016 ◽  
Vol 859 ◽  
pp. 45-49
Author(s):  
Ok Hyoung Lee ◽  
Il Teak Lee ◽  
Hee Yong Kang ◽  
Sung Mo Yang ◽  
Jun Young Yim ◽  
...  

The recent trend in automotive industry is characterized by the replacement of existing metal materials with composite ones or the combination of both for lightweight parts. This study 1) created single lap joint specimens of SPCC used for automobile frame and four adhesives; epoxy, urethane, acrylic, mixed (urethane and acrylic) and rivets to bind dissimilar materials of CFRP necessary for weight lightening, and 2) performed a tensile shear test on adhesive bonding versus adhesive bonding with rivets. In summary, this study investigated on the bonding performance of different specimens: bonding strength, shapes of the failure surface, and the effect of rivets on bond strength.


2016 ◽  
Vol 25 (1) ◽  
pp. 096369351602500 ◽  
Author(s):  
Faruk Sen

In this work, an elastic-plastic thermal and residual stress analysis were performed for adhesively bonded single lap joint. For this purpose, thermoplastic composite adherents were bonded to each other with epoxy adhesive. Thermoplastic composite material was reinforced by steel-fibres, unidirectionally. Finite element method (FEM) was preferred to obtain thermal elastic and elastic-plastic stress distributions on single lap joint. Accordingly, modelling and solution processes were achieved using ANSYS software. So as to determine effects of uniform temperature loadings on thermal and residual stresses, different values of it were loaded on the joint, uniformly. Briefly, both thermal and residual thermal stresses were calculated under uniform temperature loading which was selected from 40 °C to 80 °C. According to obtained results different thermal expansion coefficients of composite adherents and adhesive layer caused thermal and residual stresses on adhesively bonded single lap joint due to applied uniform temperature loadings. Thermal stress values for x and y-directions are very different from each other owing to orthotropic material properties of thermoplastic composite. The magnitudes of elastic analyses results are higher than elastic-plastic analysis results. Contrary to elastic analysis results, elastic-plastic analysis results were nonlinear. Thermal and residual stresses are increased by increasing uniform temperature values, so the highest values were calculated when 80 °C. The plastic yielding was firstly come into being for 50 °C loading and it is expanded related to raising thermal loadings as nonlinear.


2015 ◽  
Vol 2015.53 (0) ◽  
pp. _407-1_-_407-2_
Author(s):  
Shun Yoshida ◽  
Yusuke KAKIZAWA ◽  
Tomomi AKIYAMA ◽  
Makiko YONEHARA ◽  
Yasusuke KAWABATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document