scholarly journals High Electrochemical Performance of Nanotube Structured ZnS as Anode Material for Lithium–Ion Batteries

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1537 ◽  
Author(s):  
Wen Zhang ◽  
Junfan Zhang ◽  
Yan Zhao ◽  
Taizhe Tan ◽  
Tai Yang

By using ZnO nanorods as an ideal sacrificial template, one-dimensional (1-D) ZnS nanotubes with a mean diameter of 10 nm were successfully synthesized by hydrothermal method. The phase composition and microstructure of the ZnS nanotubes were characterized by using XRD (X-ray diffraction), SEM (scanning electron micrograph), and TEM (transmission electronic microscopy) analysis. X-ray photoelectron spectroscopy (XPS) and nitrogen sorption isotherms measurements were also used to study the information on the surface chemical compositions and specific surface area of the sample. The prepared ZnS nanotubes were used as anode materials in lithium-ion batteries. Results show that the ZnS nanotubes deliver an impressive prime discharge capacity as high as 950 mAh/g. The ZnS nanotubes also exhibit an enhanced cyclic performance. Even after 100 charge/discharge cycles, the discharge capacity could still remain at 450 mAh/g. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were also carried out to evaluate the ZnS electrodes.

Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 356
Author(s):  
Kasimayan Uma ◽  
Elavarasan Muniranthinam ◽  
Siewhui Chong ◽  
Thomas C.-K Yang ◽  
Ja-Hon Lin

This report presents the synthesis of ZnO nanorod/α-Fe2O3 composites by the hydrothermal method with different weight percentages of α-Fe2O3 nanoparticles. The as-synthesized nanorod composites were characterized by different techniques, such as X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). From our results, it was found that the ZnO/α-Fe2O3 (3 wt%) nanorod composites exhibit a higher hydrogen evolution reaction (HER) activity when compared to other composites. The synergetic effect between ZnO and (3 wt%) of α-Fe2O3 nanocomposites resulted in a low onset potential of −125 mV, which can effectively produce more H2 than pure ZnO. The H2 production rate over the composite of ZnO/α-Fe2O3 (3 wt%) clearly shows a significant improvement in the photocatalytic activity in the heterojunction of the ZnO nanorods and α-Fe2O3 nanoparticles on nickel foam.


2012 ◽  
Vol 24 (6) ◽  
pp. 1107-1115 ◽  
Author(s):  
Bertrand Philippe ◽  
Rémi Dedryvère ◽  
Joachim Allouche ◽  
Fredrik Lindgren ◽  
Mihaela Gorgoi ◽  
...  

2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


2014 ◽  
Vol 687-691 ◽  
pp. 4327-4330
Author(s):  
Yan Wang ◽  
Zhe Sheng Feng ◽  
Lu Lin Wang ◽  
Jin Ju Chen ◽  
Zhen Yu He

Li0.97K0.03FePO4 and Li0.97K0.03FePO4/graphene composites were synthesized by carbothermal reduction method using acetylene black as carbon source. The structure and electrochemical properties of the prepared materials were investigated with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge and discharge and electrochemical impedance spectra tests. The results indicated that K doping improves the cyclic stability of samples, the addition of small amounts of graphene results in better electronic properties on sample. Li0.97K0.03FePO4/graphene showed discharge capacity of 158.06 and 90.55 mAh g-1 at 0.1 C and 10 C, respectively. After the 50 cycle test at different rates, the reversible discharge capacity at 0.1 C was 158.58 mAh g-1, indicating the capacity retention ratio of 100.32%.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jialiang Tang ◽  
Vinodkumar Etacheri ◽  
Vilas G. Pol

Abstract The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.


2020 ◽  
Vol 20 (6) ◽  
pp. 3460-3465
Author(s):  
Mi-Ra Shin ◽  
Seon-Jin Lee ◽  
Seong-Jae Kim ◽  
Tae-Whan Hong

Surface coating using (3-aminopropyl)triethoxysilane (APTES) has been applied to improve the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials. The APTES coating layer on the surface of NCM523 protects the direct contact area between the cathode material and the electrolyte, and facilitates the presence of electrons through the abundance of electron-rich amine groups, thereby improving electrochemical performance. X-ray photoelectron spectroscopy confirmed the existence of APTES coating layers on the surface of NCM523 cathode materials, revealing three peaks—N1s, O1s, and Si1s—that were not identified in bare NCM523. In addition, the discharge capacities of the bare electrode and the APTES-coated NCM523 electrode were 121.06 mAh/g and 156.43 mAh/g, respectively. To the best of our knowledge, the use of an APTES coating on NCM523 cathode materials for lithium-ion batteries has never been reported.


Sign in / Sign up

Export Citation Format

Share Document