scholarly journals Electrochemical Behavior of Al(III) and Formation of Different Phases Al-Ni Alloys Deposits from LiCl-KCl-AlCl3 Molten Salt

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2113
Author(s):  
Yaru Peng ◽  
Zeng Chen ◽  
Ying Bai ◽  
Qingqing Pei ◽  
Wei Li ◽  
...  

The electrochemical behaviors of Al(III) deposits on Ni substrates were investigated in LiCl-KCl-AlCl3 (2 wt.%) molten salts. Various electrochemical methods, including cyclic voltammetry (CV), square wave voltammetry (SWV), and open circuit chronopotentiometry (OCP) were used to explore the deposition processes of Al(III) on Ni substrates. Five kinds of Al-Ni alloys phase were firstly electrodeposited by the regulation of deposition potential form LiCl-KCl-AlCl3 (2 wt.%) molten salts at 753 K. The formation of Al-Ni alloys, such as AlNi3, Ni5Al3, AlNi, Al3Ni2, and Al3Ni were confirmed by X-ray diffractometer (XRD) and the cross-section morphologies were investigated by scanning electron microscope (SEM). Meanwhile, it was found that the temperature of molten salt was another key parameter for the controlling of alloys phase. No Al-Ni alloys phase other than AlNi3 and Ni5Al3 could be deposited at 703 K.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
O. Sotelo-Mazón ◽  
C. Cuevas-Arteaga ◽  
J. Porcayo-Calderón ◽  
V.M. Salinas Bravo ◽  
G. Izquierdo-Montalvo

Corrosion resistance of pure Fe, Cr, and Ni materials exposed in NaVO3molten salt at 700°C was evaluated in static air during 100 hours. The corrosion resistance was determined using potentiodynamic polarization, open circuit potential, and lineal polarization resistance. The conventional weight loss method (WLM) was also used during 100 hours. The electrochemical results showed that Fe and Cr have a poor corrosion resistance, whereas pure Ni showed the best corrosion performance, which was supported by the passive layer of NiO formed on the metallic surface and the formation of Ni3V2O8during the corrosion processes, which is a refractory compound with a higher melting point than that of NaVO3, which reduces the corrosivity of the molten salt. Also, the behavior of these materials was associated with the way in which their corresponding oxides were dissolved together with their type of corrosion attack. Through this study, it was confirmed that when materials suffer corrosion by a localized processes such as pitting, the WLM is not reliable, since a certain amount of corrosion products can be kept inside the pits. The corroded samples were analyzed through scanning electron microscopy.


2013 ◽  
Vol 652-654 ◽  
pp. 1834-1837
Author(s):  
Jian Gang Qian ◽  
Hai Ting Li ◽  
Peng Rui Li ◽  
Tian Zhao

In this study, the dense and well-integrated Ir films were electrodeposited on Pt substrate at a constant current process in the NaCl-KCl molten salt system containing IrCl3. The morphology and constitution of the Ir films at different process conditions were examined by scanning electron microscope (SEM), energy dispersive spectroscope (EDS) and X-ray diffraction (XRD) respectively. The results showed that IrCl3 concentration had significantly influenced the surface morphology of the Ir film. The particles of the deposition film surface became lager with increasing the fraction of IrCl3 and gradually decreased with increasing the temperature. However, the film quality decreased due to the formation of some tiny holes when further increasing the temperature. The particle size decreased gradually with the increase of deposition current density. The addition of CsCl could not only reduce the molten salt temperature but also increase the deposition rate of Ir.


2012 ◽  
Vol 182-183 ◽  
pp. 52-56
Author(s):  
Jun Que Lu ◽  
Xiu Feng Wang ◽  
Hong Tao Jiang

Pure Bi12SiO20powder was successfully prepared by a molten salt method using Bi2O3and SiO2as raw materials and using KCl-K2CO3as flux at 635°C with the heating rate of 5°Cmin-1. The phase composition and microstructure of these products were analyzed by X-ray diffraction and scanning electron microscopy, and the effects of the processing parameters, such as the ratio of Bi2O3/SiO2, calciniation temperature, isothermal time and relative amount of salt, on the composition and particle size were investigated. The results indicated that regardless of changing the ratio of Bi2O3/SiO2, calciniation temperature, isothermal time or relative amount of salt the reaction only yielded Bi12SiO20without Bi2SiO5and Bi4Si3O12. Henceforth, KCl-K2CO3molten salts may be considered as an ideal reaction medium to synthesize pure phase of Bi12SiO20. The particle size of Bi12SiO20phase can be determined by changing the temperature, isothermal time and relative amount of salt.


2013 ◽  
Vol 06 (02) ◽  
pp. 1350019 ◽  
Author(s):  
XIAO-ZHU HUANG ◽  
ZHEN LIU ◽  
YIYI YANG ◽  
YANG TIAN

Two-dimensional nanosheets of lanthanum oxysulfates ( La2O2SO4 ) are prepared for the first time by a facile, effective molten salt synthesis route at a low temperature (400°C). Transmission electron microscopy (TEM) shows that the nanosheets are 100 nm to 200 nm thick and several micrometers in in-plane size. The intrinsic crystallography of the nanosheets is characterized by X-ray diffraction, high-resolution TEM, and selected area electron diffraction. The composition of the sample is studied by energy dispersive X-ray spectroscopy. The formation process of the nanosheets in molten salts is also investigated. The luminescence properties of the obtained La2O2SO4 nanosheets are investigated by doping with Eu3+ at different concentrations. The nanosheets are found to exhibit good monochromaticity with high color saturation.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6110
Author(s):  
Hui Li ◽  
Haotian Li ◽  
Chenxiao Li ◽  
Jinglong Liang ◽  
Hongyan Yan ◽  
...  

The molten salt electrochemical method was used to reduce the Co in spent LiCoO2. The reduction mechanism of Co (III) in LiCoO2 was analyzed by cyclic voltammetry, square wave voltammetry, and open circuit potential. The reduction process of Co (III) on Fe electrode was studied in NaCl-CaCl2-LiCoO2 molten salt system at 750 °C. The results show that the reduction process of Co (III) is a two-step reduction: Co (III) → Co (II) → Co (0) and they are all quasi-reversible processes controlled by diffusion. Phase analysis (XRD) shows that Li+ and Cl2− in the molten salt form LiCl electrolysis experiments with different voltages were carried out, which proved the stepwise reduction of Co in LiCoO2.


1996 ◽  
Vol 451 ◽  
Author(s):  
D. Lincot ◽  
M. J. Furlong ◽  
M. Froment ◽  
R. Cortes ◽  
M. C. Bernard

ABSTRACTChalcogenide semiconductors have been deposited epitaxially from aqueous solutions either chemically or electrochemically at growth rates of up to 0.7 μmhr−1. After recalling the basic principles of these deposition processes, results are presented concerning chemically deposited CdS on InP, GaP and CuInSe2 substrates, electrodeposited CdTe on InP, and CdSAnP heterostructures. Characterisation of these structures by RHEED, TEM, HRTEM, and glazing angle X ray diffraction allows to analyse the effects of substrate orientation, polarity, lattice match plus the influence of temperature on epitaxial growth. These results are discussed in terms of self organisation and a site selective growth mechanisms due to the free enegy of formation of each compound.


Author(s):  
Hayette Faid

AbstractIn this work, Zn-Ni alloys have been deposited on steel from sulfate bath, by electrodeposition method. The effect of Zn content on deposits properties was studied by cyclic voltammetry (CV), chronoaperometry (CA), linear stripping voltammetry (ALSV) and diffraction (XRD) and scanning electronic microscopy (SEM). The corrosion behavior in 3.5 wt. NaCl solution was examined using anodic polarization test and electrochemical impedance spectroscopy. X-ray diffraction of show that Zn-Ni alloys structure is composed of δ phase and γ phase, which increase with the decrease of Zn content in deposits. Results show that deposits obtained from bath less Zn2+ concentration exhibited better corrosion resistance.


2020 ◽  
pp. 73-83
Author(s):  
L. V. Morozova ◽  
◽  
I. A. Drozdova ◽  

The xerogels in the system 0.88 mol.% ZrO2 − 0.12 mol.% CeO2 were obtained by the method of coprecipitation in a neutral (pH = 7) and slightly alkaline (pH = 9) medium under the influence of ultrasound with the size of the agglomerates 70 – 230 nm. It is shown that the coprecipitation of hydroxides of zirconium and cerium at pH = 9 with the use of ultrasonic treatment facilitates the formation of a primary crystal is symbolic of the particles in the xerogel, whose size is ~ 5 nm, whereas the xerogel synthesized in a neutral environment consists only of the x-ray amorphous phase. The effect of pH-precipitation on deposition processes of dehydration of the xerogels and crystallization solid solution based on zirconia oxide in the metastable pseudocubic modification (с′-ZrO2) was discovered. It was found that in the temperature range 500 – 800 °C there is a phase transition с′-ZrO2 → t-ZrO2, the size of the crystallites of the formed tetragonal solid solutions is 8 and 11 nm. The method of low-temperature nitrogen adsorption were investigated dispersion properties and characteristics of the pore structure of the powders of the solid solution Zr0.88Ce0.12O2. It is determined that the specific surface area of t-ZrO2 samples obtained after firing at 800 °C is 117 and 178 m2/g, the total pore volume reaches 0.300 − 0.325 cm3/g, the pore size distribution is monomodal and is in the range of 2 − 8 nm. The effect of thermal “aging” at a temperature of 800 °C (40 h) on the structure and dispersion of the solid solution t-ZrO2 powders was studied.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Violeta Vasilache ◽  
Gheorghe Gutt ◽  
Traian Vasilache

The electrochemical deposition of zinc and combinations with elements of the 8th group of the Periodic System (nickel, cobalt, iron) have good properties for anticorrosive protection, compared with pure zinc. For steel pieces, these films delay apparition and formation of white and red iron oxide. We used solutions with different concentrations of zinc chloride, nickel chloride and potassium chloride. To analyze the results we used the optic microscope and the X-ray diffraction.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


Sign in / Sign up

Export Citation Format

Share Document