scholarly journals Effects of a Carbon Nanotube Additive on the Corrosion-Resistance and Heat-Dissipation Properties of Plasma Electrolytic Oxidation on AZ31 Magnesium Alloy

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2438 ◽  
Author(s):  
Myungwon Hwang ◽  
Wonsub Chung

Plasma electrolytic oxidation (PEO) coating was obtained on AZ31 Mg alloy using a direct current in a sodium silicate-based electrolyte with and without a carbon nanotube (CNT) additive. The surface morphology and phase composition of the PEO coatings were investigated through field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The corrosion-resistance properties of the PEO coatings were evaluated using potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) in a 3.5 wt.% NaCl solution. Furthermore, the heat-dissipation property was evaluated by a heat-flux measurement setup using a modified steady-state method and Fourier transform infrared spectroscopy (FT-IR). The results demonstrate that, by increasing the concentration of CNT additive in the electrolyte, the micropores and cracks of the PEO coatings are greatly decreased. In addition, the anticorrosion performance of the PEO coatings that incorporated CNT for the protection of the Mg substrate was improved. Finally, the coating’s heat-dissipation property was improved by the incorporation of CNT with high thermal conductivity and high thermal emissivity.

2020 ◽  
Vol 67 (1) ◽  
pp. 48-58
Author(s):  
Wanying Liu ◽  
Junjie Yang ◽  
Yuhong Qiu ◽  
Ying Liu ◽  
Kuanhai Deng

Purpose The preferable concentration of titanium carbide was optimized and added as an additive to the micro-arc oxidation electrolyte to produce a high corrosion-resistant coating on D16T aluminum alloy. Design/methodology/approach Ceramic coatings were deposited on D16T aluminum alloy by plasma electrolytic oxidation in alkaline silicate electrolytes with micron titanium carbide particle suspending at different concentrations. Influences of additive concentration on morphology, elemental and phase composition and corrosion resistance of doped PEO coatings were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical methods, respectively. Findings Results revealed that suspending titanium carbide additives incorporated into ceramic coatings through discharging channels and chemically transformed into amorphous stage. The content of titanium in the doped coatings increased with the increasing concentration of suspending micron additive. Compared with the coating without particle addition, the corrosion resistance of the coating produced in 8 g/L titanium carbide suspension increased more than 20 times. The result indicated that the incorporation of titanium into the PEO coatings formed on the D16T aluminum alloy could effectively improve the corrosion resistance. Originality/value The mechanism of corporation of TiC and the mechanism of improving the corrosion resistance of the coating were proposed.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2018 ◽  
Vol 25 (05) ◽  
pp. 1850102 ◽  
Author(s):  
Y. ZHANG ◽  
W. FAN ◽  
H. Q. DU ◽  
Y. W. ZHAO

Plasma electrolytic oxidation (PEO) coatings were formed on aluminium alloy in additive Al2O3- and TiO2-containing Na2SiO3-based electrolytes, respectively. The effect of these additives on morphology, composition and wearing properties of coatings was investigated. The morphology and composition of coatings were studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Analysis of wearing properties of coatings were done by friction and wearing experiment. It was found that the use of additives greatly affects the surface morphology of coatings. It is shown that the content of [Formula: see text]-Al2O3 in coatings formed in Al2O3-containing electrolytes increased with the addition of Al2O3. However, the content of [Formula: see text]-Al2O3 in coatings formed in TiO2-containing electrolytes first increased and then decreased. Among these coatings, the coating formed in silicate-based electrolytes system containing 7[Formula: see text]g/L Al2O3 showed the most superior wearing properties.


2011 ◽  
Vol 121-126 ◽  
pp. 3837-3841
Author(s):  
Li Hong Lu ◽  
Jing Wu Zhang ◽  
De Jiu Shen

The anatase coatings was obtained by aqua regia dealloying and plasma electrolytic oxidation (PEO) method on NiTi shape memory alloy (SMA) substrate. The PEO manufacturability of NiTi SMA before and after dealloying was researched. The PEO surface morphologies of the aqua regia treated and untreated specimens were investigated with scanning electron microscopy (SEM). The composition of the PEO coatings was investigated with X-ray diffraction (XRD). The element concentration of the surface of the PEO-treated NiTi SMA was measured by an energy dispersive X-ray spectrometer (EDS). The results indicate that the pre-treatment technology by aqua regia dealloying can greatly improve the PEO manufacturability and the PEO morphologies of the NiTi SMA. The optimum dealloying parameters are at room temperature for 10 min. At this circumstance, the PEO manufacturability of the treated samples is most close to that of the industrial pure titanium. There are many honeycomb-like micro-pores in the surface of the PEO coatings, which act as discharging channels. The cracks are invisible in the SEM images of the PEO coatings. The PEO coatings formed on the NiTi is composed of Ti, Ni, Al, O, Au and P. The composition of the PEO coatings is mainly composed of NiTi phase and anatase phase.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1241
Author(s):  
Kristina Mojsilović ◽  
Uroš Lačnjevac ◽  
Srna Stojanović ◽  
Ljiljana Damjanović-Vasilić ◽  
Stevan Stojadinović ◽  
...  

In this paper, we employed plasma electrolytic oxidation (PEO) of aluminum in a water solution of sodium tungstate (Na2WO4∙2H2O) with the addition of the pure and Ce-loaded zeolites clinoptilolite and 13 X for the preparation of oxide coatings. The obtained coatings were characterized with respect to their morphologies and chemical and phase compositions using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, atomic force microscopy, and X-ray diffraction. The prepared coatings contained γ-alumina, WO3, and metallic tungsten. The surface morphologies of the obtained coatings strongly depended on the PEO processing time; the roughness of all coatings increased with PEO time, while porosity decreased with PEO processing time as a result of microdischarge coalescence and growth. All coatings contained elements originating from the substrate and from the electrolytes. Coatings containing zeolites with Ce showed higher photoactivity than those with immobilized pure zeolites. The highest photocatalytic activity levels were observed for coatings containing immobilized Ce-exchanged clinoptilolite processed for 10 min. It was observed that both clinoptilolite and 13X zeolites improved the features of the PEO coatings in a similar manner, making natural and abundant clinoptilolite an excellent candidate for various applications.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 619
Author(s):  
Maciej Sowa ◽  
Marta Wala ◽  
Agata Blacha-Grzechnik ◽  
Artur Maciej ◽  
Alicja Kazek-Kęsik ◽  
...  

There are many methods for incorporating organic corrosion inhibitors to oxide coatings formed on aluminum alloys. However, typically they require relatively concentrated solutions of inhibitors, possibly generating a problematic waste and/or are time-/energy-consuming (elevated temperature is usually needed). The authors propose a three-step method of oxide layer formation on 6061-T651 aluminum alloy (AAs) via alternating current (AC) plasma electrolytic oxidation (PEO), impregnation with an 8-hydroxyquinoline (8-HQ) solution, and final sealing by an additional direct current (DC) polarization in the original PEO electrolyte. The obtained coatings were characterized by scanning electron microscopy, roughness tests, contact angle measurements, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Additionally, corrosion resistance was assessed by potentiodynamic polarization in a NaCl solution. Two types of the coating were formed (A—thicker, more porous at 440 mA cm−2; B—thinner, more compact at 220 mA cm−2) on the AA substrate. The 8-HQ impregnation was successful as evidenced by XPS. It increased the contact angle only for the B coatings and improved the corrosion resistance of both coating systems. Additional DC treatment destroyed superficially adsorbed 8-HQ. However, it served to block the coating pores (contact angle ≈ 80°) which improved the corrosion resistance of the coating systems. DC sealing alone did not bring about the same anti-corrosion properties as the combined 8-HQ impregnation and DC treatment which dispels the notion that the provision of the inhibitor was a needless step in the procedure. The proposed method of AA surface treatment suffered from unsatisfactory uniformity of the sealing for the thicker coatings, which needs to be amended in future efforts for optimization of the procedure.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4037
Author(s):  
Zhenjun Peng ◽  
Hui Xu ◽  
Siqin Liu ◽  
Yuming Qi ◽  
Jun Liang

Phosphate and aluminate electrolytes were used to prepare plasma electrolytic oxidation (PEO) coatings on 6061 aluminum alloy. The surface and cross-section microstructure, element distribution, and phase composition of the PEO coatings were characterized by SEM, EDS, XPS, and XRD. The friction and wear properties were evaluated by pin-on-disk sliding tests under dry conditions. The corrosion resistance of PEO coatings was investigated by electrochemical corrosion and salt spray tests in acidic environments. It was found that the PEO coatings prepared from both phosphate and aluminate electrolytes were mainly composed of α-Al2O3 and γ-Al2O3. The results demonstrate that a bi-layer coating is formed in the phosphate electrolyte, and a single-layered dense alumina coating with a hardness of 1300 HV is realizable in the aluminate electrolyte. The aluminate PEO coating had a lower wear rate than the phosphate PEO coating. However, the phosphate PEO coating showed a better corrosion resistance in acidic environment, which is mainly attributed to the presence of an amorphous P element at the substrate/coating interface.


2011 ◽  
Vol 295-297 ◽  
pp. 1684-1690
Author(s):  
Hai He Luo ◽  
Qi Zhou Cai

A ZrO2-Y2O3-containing composite ceramic coating was firstly in situ prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) technique in an alkaline silicate-containing electrolyte. The morphology, chemical composition and corrosion resistance of the PEO coating were investigated by environmental scanning electron microscopy (ESEM), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectrometer, dropping corrosion and electrochemical corrosion test. The results showed that the ceramic coating consisted of two distinct structural layers: an outer loose layer and an inner dense layer; it was composed of t-ZrO2, Y2O3, SiO2and some magnesium compounds, such as MgO,MgF2and Mg2SiO4. In addition, the ceramic coating also showed excellent dropping and electrochemical corrosion resistance, which was mainly attributed to its special phase composition and microstructure.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Marta Mohedano ◽  
Beatriz Mingo

The demand of modern technological society for light structural materials (Al, Ti, Mg) emphasizes a combination of good corrosion resistance with wear properties and functionalized surfaces [...]


2019 ◽  
Vol 69 (12) ◽  
pp. 3490-3493
Author(s):  
Elisabeta Coaca ◽  
Alexandru Marin ◽  
Oana Rusu ◽  
Viorel Malinovschi ◽  
Victor Andrei

Anticorrosion layers were prepared on commercial Zr-2.5%Nb alloy by employing plasma electrolytic oxidation (PEO) process in aqueous electrolyte solutions. Microstructure and electrochemical behavior were evaluated using X-ray diffraction (XRD), optical metallography and potentiodynamic polarization measurements. The obtained coatings are uneven, presenting a dominant monoclinic crystallographic phase of ZrO2. Enhanced corrosion resistance was attributed to the PEO-treated samples compared to the commercial black oxide coating.


Sign in / Sign up

Export Citation Format

Share Document