scholarly journals Temporary Wettability Tuning of PCL/PDMS Micro Pattern Using the Plasma Treatments

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 644 ◽  
Author(s):  
Wei-Chih Lin ◽  
Nur Mohd Razali

Surface wettability plays an important role in determining the function of a wound dressing. Dressings with hydrophobic surfaces are suitable for bacterial adsorption, however, a hydrophilic surface is needed to improve cell attachment for most anchorage-dependent cell types. Furthermore, the hydrophobicity/hydrophilicity of the surface can be used to direct cellular processes such as cell initial attachment, adhesion, and migration during wound healing. Thus, a surface with an ability to switch their surface wettability improves the practicality of the dressing. In this study, we propose a temporary surface wettability tuning for surface patterning utilizing plasma treatment. Polycaprolactone (PCL) and polydimethylsiloxane (PDMS) surfaces were treated with tetrafluoromethane (CF4), sulphur hexafluoride (SF6), and oxygen (O2) plasma, and the effects on the surface wettability, roughness, and chemical composition were investigated. Based on the contact angle measurement, CF4 plasma altered surface wettability of PCL and PDMS films to hydrophobic and hydrophilic, respectively. After CF4 treatment, better attachment of primary mouse embryonic fibroblast cell (3T3) was observed on the treated PDMS surface. Embedding PCL into PDMS generated a hydrophobic-hydrophilic pattern mixture surface, which offers great potential in the tissue engineering field such as cell patterning and guidance.

2007 ◽  
Vol 342-343 ◽  
pp. 353-356 ◽  
Author(s):  
Jung Bok Lee ◽  
Seong Mi Yu ◽  
Sang Gil Lee ◽  
Jae Bong Choi ◽  
Jeong Koo Kim

PLGA (75:25)/hydroxyapatite (HA) composite films were fabricated by solvent-casting method to investigate the effect of various hydroxyapatite content ratio to the PLGA film for cellular attachment and proliferation. Mechanical property of the composite film was characterized by tensile test. The ultimate tensile strength of 10% HA content film was two folds higher than control group. The surface of the film was characterized by contact angle measurement. The PLGA/HA composite film was more hydrophilic than control film. In vitro chondrocyte responses to the composite films were measured by cellular attachment and proliferation test. The attached and proliferated cells were significantly higher on PLGA/HA (10%) composite film than control group (1.44 times higher in attachment test and 1.31 times higher for 6th-day at culture in proliferation assaying, p<0.05). Base on these finding, the PLGA/HA (10%) composite was effective for the cell attachment for the initial stage of cultivation and cell proliferation.


2017 ◽  
Vol 14 (132) ◽  
pp. 20170318 ◽  
Author(s):  
Joni Leivo ◽  
Sanni Virjula ◽  
Sari Vanhatupa ◽  
Kimmo Kartasalo ◽  
Joose Kreutzer ◽  
...  

Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications.


2014 ◽  
Vol 609-610 ◽  
pp. 357-361
Author(s):  
Wei Wei An ◽  
Xiao Li Zhao ◽  
Le Gu ◽  
Run Zhou Su

In this work, carbon films were deposited by magnetron sputtering on silicon substrate. The effect of sputtering time on the surface wettability and mechanical properties of carbon films was investigated. Contact angle measurement was used to analyse surface wettability, and the nanomechanical properties were characterized by nanoindentation. In experiments, the sputtering time was 45 min, 60 min, 75 min and 90 min. The measurement results show that the maximum film hardness was achieved for sputtering time 90 min, with a value of 2.34 GPa. Longer sputtering time resulted in preferable mechanical properties. It was analyzed that the size of the crystal grains on the substrate surface and thickness of the films were increased with the increment of sputtering time. The surface roughness decreased with the increase of sputtering time. Moreover, Youngs modulus increased with sputtering time and the maximum value was 16.94 GPa. The contact angle measurement results show that the prepared films take on the hydrophilicity. The minimum contact angle was achieved for sputtering time 45 min with a value of 54o.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Yu Chen ◽  
David. M. Kim ◽  
Cliff Lee ◽  
John Da Silva ◽  
Shigemi Nagai ◽  
...  

AbstractThe aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen (Col-I) from TiO2 nanotubes (NT-EPF surface). We hypothesized that the NT-EPF surface would play bifunctional roles in stimulating platelet-mediated fibroblast recruitment and anchoring fibroblast-derived Col-I to form a perpendicular collagen assembly, mimicking the connective tissue attachment around natural teeth for the long-term maintenance of dental implants. Ti surface modification was accomplished in two steps. First, TiO2 nanotubes (NT) array was fabricated via anodization. Diameters and depths of NTs were controlled by applied voltage and duration. Subsequently, an electrophoretic fusion (EPF) method was applied to fuse Col-I into nanotube arrays in a perpendicular fashion. Surface wettability was assessed by contact angle measurement. The bioactivity of modified TiO2 surfaces was evaluated in terms of NIH3T3 fibroblast attachment, platelet activation, and collagen extension. Early attachment, aggregation, and activation of platelets as well as release of platelet-related growth factors were demonstrated on NT-EPF surfaces. Platelet-mediated NIH3T3 cells migration toward NT-EPF was significantly increased and the attached cells showed a typical fibrous morphology with elongated spindle shape. A direct linkage between pseudopod-like processes of fibroblasts to NT-EPF surfaces was observed. Furthermore, the engineered EPF collagen protrusion linked with cell-derived collagen in a perpendicular fashion. Within the limitation of this in vitro study, the TiO2 nanotube with perpendicular Col-I surface (NT-EPF) promoted better cell attachment, induced a strong platelet activation which suggested the ability to create a more robust soft tissue seal.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
H. D. K. Yulianto dan M. Rinastiti

The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA)-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact angle in clinical circumstances. This research was performed to compare between contact angles measured by means of a CA-Goniometer device and a new practical method of drop profile image analysis. In addition, since there were two different formulas that can be used to calculate contact angle value from a drop profile image, then we also need to evaluate which formula is more reliable to be used. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc.) sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc.) sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. The differences in percentage between the contact angle value calculated by the “linier gradient equation” and “tangential line” formulas, and those calculated by means of the CA-Goniometer are 20,56% and 3,51%, respectively. It is obviously demonstrated that the value obtained by the “tangential line” formula has a smaller difference compared to those obtained by the “linier equation gradient” formula. Among the two different formulas, it is confirmed that the contact angle value calculated with the “tangential line” formula has closer similarity with the value obtained from the CA-Goniometer. This result confirms that the new practical method of drop profile image analysis is promising for measuring contact angle values in clinical circumstances. Related to the drop profile image analysis, the “tangential line” formula is more accurate compared to the “linier gradient equation” formula.


2020 ◽  
Vol 12 (3) ◽  
pp. 403-406
Author(s):  
Seonjun Kim ◽  
Young Tae Cho

In this study, a nano-micro pattern was fabricated by a nanoimprint lithography process using a porous material, particularly anodic aluminum oxide (AAO), and polymer resin. The fabricated mold consisted of a group of nanowires forming a bundle and showing a specific micro pattern. The structures were subjected to various surface treatments to control surface conditions and wettability. UV-Ozone treatment and octadecyltrichlorosilane (OTS) coating were used as surface treatments. Through these surface treatments, the surface energy of the fabricated structure was lowered, and as a result, it could be used as a mold for nano-micro patterning. The final product was also fabricated through a nanoimprint lithography process, and the reverse image of the mold was duplicated. The surface of each structure was observed by scanning electron microscopy (SEM) and the surface properties were examined by contact angle measurement.


Sign in / Sign up

Export Citation Format

Share Document