Replication and Surface Treatment of Micro Pattern Generated by Entanglement of Nanowires

2020 ◽  
Vol 12 (3) ◽  
pp. 403-406
Author(s):  
Seonjun Kim ◽  
Young Tae Cho

In this study, a nano-micro pattern was fabricated by a nanoimprint lithography process using a porous material, particularly anodic aluminum oxide (AAO), and polymer resin. The fabricated mold consisted of a group of nanowires forming a bundle and showing a specific micro pattern. The structures were subjected to various surface treatments to control surface conditions and wettability. UV-Ozone treatment and octadecyltrichlorosilane (OTS) coating were used as surface treatments. Through these surface treatments, the surface energy of the fabricated structure was lowered, and as a result, it could be used as a mold for nano-micro patterning. The final product was also fabricated through a nanoimprint lithography process, and the reverse image of the mold was duplicated. The surface of each structure was observed by scanning electron microscopy (SEM) and the surface properties were examined by contact angle measurement.

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 644 ◽  
Author(s):  
Wei-Chih Lin ◽  
Nur Mohd Razali

Surface wettability plays an important role in determining the function of a wound dressing. Dressings with hydrophobic surfaces are suitable for bacterial adsorption, however, a hydrophilic surface is needed to improve cell attachment for most anchorage-dependent cell types. Furthermore, the hydrophobicity/hydrophilicity of the surface can be used to direct cellular processes such as cell initial attachment, adhesion, and migration during wound healing. Thus, a surface with an ability to switch their surface wettability improves the practicality of the dressing. In this study, we propose a temporary surface wettability tuning for surface patterning utilizing plasma treatment. Polycaprolactone (PCL) and polydimethylsiloxane (PDMS) surfaces were treated with tetrafluoromethane (CF4), sulphur hexafluoride (SF6), and oxygen (O2) plasma, and the effects on the surface wettability, roughness, and chemical composition were investigated. Based on the contact angle measurement, CF4 plasma altered surface wettability of PCL and PDMS films to hydrophobic and hydrophilic, respectively. After CF4 treatment, better attachment of primary mouse embryonic fibroblast cell (3T3) was observed on the treated PDMS surface. Embedding PCL into PDMS generated a hydrophobic-hydrophilic pattern mixture surface, which offers great potential in the tissue engineering field such as cell patterning and guidance.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Siyi Min ◽  
Shijie Li ◽  
Zhouyang Zhu ◽  
Wei Li ◽  
Xin Tang ◽  
...  

AbstractWe report a large-scale surface with continuously varying wettability induced by ordered gradient nanostructures. The gradient pattern is generated from nonuniform interference lithography by utilizing the Gaussian-shaped intensity distribution of two coherent laser beams. We also develop a facile fabrication method to directly transfer a photoresist pattern into an ultraviolet (UV)-cured high-strength replication molding material, which eliminates the need for high-cost reactive ion etching and e-beam evaporation during the mold fabrication process. This facile mold is then used for the reproducible production of surfaces with gradient wettability using thermal-nanoimprint lithography (NIL). In addition, the wetting behavior of water droplets on the surface with the gradient nanostructures and therefore gradient wettability is investigated. A hybrid wetting model is proposed and theoretically captures the contact angle measurement results, shedding light on the wetting behavior of a liquid on structures patterned at the nanoscale.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1956
Author(s):  
Tetsuma Marumo ◽  
Shin Hiwasa ◽  
Jun Taniguchi

Ultraviolet nanoimprint lithography (UV-NIL) requires high durability of the mold for the mass production of nanostructures. To evaluate the durability of a line-patterned replica mold made of high-hardness UV curable resin, repetitive transfer and contact angle measurements of the replica mold were carried out. In the line patterns, as the contact angle decreases due to repeated transfer, capillary action occurs, and water flows along them. Therefore, it can be said that a mold with a line pattern exhibits an anisotropic contact angle because these values vary depending on the direction of the contact angle measurement. Subsequently, these anisotropic characteristics were investigated. It was determined that it was possible to predict the lifetime of line-and-space molds over repeated transfers. As the transcription was repeated, the contact angle along the line patterns decreased significantly before becoming constant. Moreover, the contact angle across the line pattern decreased slowly while maintaining a high contact angle with respect to the contact angle along the line pattern. The contact angle then decreased linearly from approximately 90°. The mold was found to be macroscopically defect when the values of the contact angle along the line pattern and the contact angle across the line pattern were close. Predicting the mold’s lifetime could potentially lead to a shortened durability evaluation time and the avoidance of pattern defects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed S. Belal ◽  
Jehan El Nady ◽  
Azza Shokry ◽  
Shaker Ebrahim ◽  
Moataz Soliman ◽  
...  

AbstractOily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm−2 h−1, while for the viscous oil as diesel was 1452.7 Lm−2 h−1.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


2016 ◽  
Vol 36 (8) ◽  
pp. 771-784 ◽  
Author(s):  
Tejinder Kaur ◽  
Arunachalam Thirugnanam ◽  
Krishna Pramanik

Abstract Poly(vinyl alcohol) reinforced with nanohydroxyapatite (PVA-nHA) composite scaffolds were developed by varying the nHA (1%, 2%, 3%, 4%, and 5%, w/v) composition in the PVA matrix by solvent casting technique. The developed composite scaffolds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurement. The stability of the composite scaffolds in physiological environment was evaluated by swelling and degradation studies. Further, these composite scaffolds were tested for in vitro bioactivity, hemolysis, biocompatibility, and mechanical strength. SEM micrographs showed a homogenous distribution of nHA (3%, w/v) in the PVA matrix. XRD and ATR-FTIR analysis confirmed no phase contamination and the existence of the chemical bond between PVA-nHA at approximately 2474 cm-1. PVA-nHA composite scaffolds with 3% (w/v) concentration of nHA showed nominal swelling and degradation behavior with good mechanical strength. The mechanical strength and degradation properties of the scaffold above 3% (w/v) of nHA was found to deteriorate, which is due to the agglomeration of nHA. The in vitro bioactivity and hemolysis studies showed improved apatite formation and hemocompatibility of the developed scaffolds. In vitro cell adhesion, proliferation, alkaline phosphatase activity, and Alizarin red S staining confirmed the biocompatibility of the composite scaffolds.


2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


Author(s):  
He Xu ◽  
Yan Xu ◽  
Peiyuan Wang ◽  
Hongpeng Yu ◽  
Ozoemena Anthony Ani ◽  
...  

Purpose The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy. Design/methodology/approach First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model. Findings In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results. Originality/value This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.


2021 ◽  
Vol 27 (2) ◽  
pp. 421-428
Author(s):  
Rudranarayan Kandi ◽  
Pulak Mohan Pandey ◽  
Misba Majood ◽  
Sujata Mohanty

Purpose This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing. Design/methodology/approach The manufacturing approach involved extrusion of polymeric ink over a rotating predefined pattern to construct customized tubular structure of polycaprolactone (PCL) and polyurethane (PU). Dimensional deviation in thickness of scaffolds were calculated for various layer thicknesses of 3D printing. Physical and chemical properties of scaffolds were investigated by scanning electron microscope (SEM), contact angle measurement, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). Mechanical characterizations were performed, and the results were compared to the reported properties of human native trachea from previous reports. Additionally, in vitro cytotoxicity of the fabricated scaffolds was studied in terms of cell proliferation, cell adhesion and hemagglutination assay. Findings The developed fabrication route was flexible and accurate by printing customized tubular scaffolds of various scales. Physiochemical results showed good miscibility of PCL/PU blend, and decrease in crystalline nature of blend with the addition of PU. Preliminary mechanical assessments illustrated comparable mechanical properties with the native human trachea. Longitudinal compression test reported outstanding strength and flexibility to maintain an unobstructed lumen, necessary for the patency. Furthermore, the scaffolds were found to be biocompatible to promote cell adhesion and proliferation from the in vitro cytotoxicity results. Practical implications The attempt can potentially meet the demand for flexible tubular scaffolds that ease the concerns such as availability of suitable organ donors. Originality/value 3D printing over accurate predefined templates to fabricate customized grafts gives novelty to the present method. Various customized scaffolds were compared with conventional cylindrical scaffold in terms of flexibility.


Sign in / Sign up

Export Citation Format

Share Document