scholarly journals Experimental Analysis and Simulation of Novel Technical Textile Reinforced Composite of Banana Fibre

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1134 ◽  
Author(s):  
Mario Monzón ◽  
Rubén Paz ◽  
Martí Verdaguer ◽  
Luis Suárez ◽  
Pere Badalló ◽  
...  

The use of natural fibres allows reducing environmental impact, due to their natural renewable origin and the lower energy needed for their production and processing. This work presents the mechanical characterization of a newly developed technical textile, with banana fibre treated by enzymes, comparing experimental results with numerical simulation based on the definition of the unit cell at micromechanical level. The experimental test shows that the composite with the fabric of banana fibre presents worse mechanical behaviour than the one with commercial flax fibre. The presence of wool, necessary for producing the yarn, reduces the mechanical properties of the banana textile. The numerical simulation had an acceptable error compared with the experimental results, with a global average error of 9%, showing that the predictive modelling based on the multiscale method is suitable for the design process of this kind of composite.

2021 ◽  
Author(s):  
Paolo Carbone

<p>This paper introduces a novel procedure for quick estimation of the parameters of a sum of sinusoidal signals based on one-bit measurements. Amplitude, phases and, frequencies of the signal components are assumed unknown, as well as the threshold level of the comparator used to produce measurement results. To provide enough information at the one-bit quantizer input, a sinewave is assumed to dither one of the two comparator's inputs. To ease the procedure's application, only the peak-to-peak amplitude of this dither signal is assumed known. Theoretical, simulation-based and experimental results validate the presented approach.</p>


2011 ◽  
Vol 338 ◽  
pp. 84-89 ◽  
Author(s):  
Mei Ying Zhao ◽  
Jing Jing Li

This article investigated a new metallic leading edge bird strike resistant structure, using corrugate board as its enhanced component to absorb more bird kinetic energy. This structure was called as Corrugate Board Leading Edge (CBLE) structure. To verify the structure’s bird strike resistant ability, numerical simulation based on the LS-DYNA was carried out, and succeeding experiments were performed. However, the experimental results were not exciting. They were not as the simulation results we expected. The reasons were analyzed through this article. Finally a rivet-relative model was created considering the influence of riveting. This model was proved to be accurate by comparing with experimental results. Based on the analysis above, an Optimized CBLE (O-CBLE) structure was used to optimize the bird strike resistant ability, the energy absorption rate of O-CBLE structure increased 11.4% while the structural quality was only slightly increased.


2016 ◽  
Vol 456 ◽  
pp. 86-90 ◽  
Author(s):  
B. Lucznik ◽  
M. Iwinska ◽  
T. Sochacki ◽  
M. Amilusik ◽  
M. Fijalkowski ◽  
...  

2021 ◽  
Author(s):  
Paolo Carbone

<p>This paper introduces a novel procedure for quick estimation of the parameters of a sum of sinusoidal signals based on one-bit measurements. Amplitude, phases and, frequencies of the signal components are assumed unknown, as well as the threshold level of the comparator used to produce measurement results. To provide enough information at the one-bit quantizer input, a sinewave is assumed to dither one of the two comparator's inputs. To ease the procedure's application, only the peak-to-peak amplitude of this dither signal is assumed known. Theoretical, simulation-based and experimental results validate the presented approach.</p>


2021 ◽  
Vol 1026 ◽  
pp. 136-141
Author(s):  
Masaji Watanabe ◽  
Fusako Kawai

This study demonstrates application of mathematical techniques such as modeling, inverse analysis, and numerical simulation to biodegradation of xenobiotic polymer. In particular, this paper presents results of numerical simulation based on experimental results. Numerical results and experimental results show the behavior of microbial population in exogenous type depolymerization processes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258861
Author(s):  
Chaoyi Zhang ◽  
Feng Chen ◽  
Lei Sun ◽  
Zhangchao Ma ◽  
Yan Yao

In this paper, a mathematical model based on spherical differential unit cell is proposed as a model for studying seasonal freeze-thaw soil space infinitesimal differential unit cell. From this model, the basic equations of permafrost moisture and heat flow motion are directly derived, then the linked equations form the permafrost water-heat coupled transport model. On this basis, the one-dimensional seasonal permafrost water-heat transport equation is derived. The model reduces the original spatial three-variable coordinate system (parallel hexahedron) into a coupled equation with a single spherical radius (R) as the independent variable, so the iterations of the numerical simulation algorithm is greatly reduced and the complexity is decreased. Finally, the model is used to simulate the seasonal freeze-thaw soil in the ShiHeZi region of Xinjiang, China. The principle of the simulation is to collect the soil temperature and humidity values of the region in layers and fixed-points using a homemade freeze-thaw soil sensor, after that we solve it by numerical calculation using MATLAB. The analysis results show that the maximum relative error of the model we proposed is 4.36, the minimum error is 0.98, and the average error is 2.515. The numerical simulation results are basically consistent with the measured data, then the proposed model is consistent with the matching states of permafrost moisture content and soil temperature in the region at different times. In addition, the experiments also demonstrate the reliability and accuracy of the model.


2021 ◽  
Vol 11 (10) ◽  
pp. 4384
Author(s):  
Dongseop Han ◽  
Wooseong Che

The most important item when indicating the mechanical properties of offshore elastomeric bearings is the shear modulus, and the method of measuring this is shown in EN 1337-3, a regulation related to offshore elastomeric bearings. In this work, we conducted an experimental and numerical study on an offshore elastomeric bearing to find its shear modulus. Shear modulus tests were conducted according to the procedure specified in EN 1337-3 Annex F, while simulations were performed using the finite element analysis (FEA) software, ANSYS. The main objective of this research work is to determine optimum analysis conditions for the simulation method that considers a nonlinear model for the elastomer material and predicts the experimental results accurately. We considered the Mooney–Rivlin (M-R) model that has two-parameter (2P), five-parameter (5P), and nine-parameter (9P) forms, depending on the number of terms in the series. We observed that the load-displacement graph is linear, and the percentage error between the results obtained with 2P and 5P M-R models is around 2.23% in the compression and 0.38% in the shear. The simulation results from 2P M-R model showed a good agreement with the experimental results with the correlation coefficient (R2) being 0.999 with an average error of about 2%. However, the deviation between the experimental and simulation results from the 9P M-R model is very high, with about 7%. Based on this study, we can say that the 2P M-R model can accurately predict the nonlinear behavior of hyperelastic material used in elastomer bearing. In addition, the shear modulus of elastic bearings for Class 3 Shore hardness was verified by comparing the numerical simulation values with those presented in EN 1337-3 Annex D.


2019 ◽  
Vol 30 (2) ◽  
pp. 109-122
Author(s):  
Aleksandar Bulajić ◽  
Miomir Despotović ◽  
Thomas Lachmann

Abstract. The article discusses the emergence of a functional literacy construct and the rediscovery of illiteracy in industrialized countries during the second half of the 20th century. It offers a short explanation of how the construct evolved over time. In addition, it explores how functional (il)literacy is conceived differently by research discourses of cognitive and neural studies, on the one hand, and by prescriptive and normative international policy documents and adult education, on the other hand. Furthermore, it analyses how literacy skills surveys such as the Level One Study (leo.) or the PIAAC may help to bridge the gap between cognitive and more practical and educational approaches to literacy, the goal being to place the functional illiteracy (FI) construct within its existing scale levels. It also sheds more light on the way in which FI can be perceived in terms of different cognitive processes and underlying components of reading. By building on the previous work of other authors and previous definitions, the article brings together different views of FI and offers a perspective for a needed operational definition of the concept, which would be an appropriate reference point for future educational, political, and scientific utilization.


Author(s):  
Ross McKibbin

This book is an examination of Britain as a democratic society; what it means to describe it as such; and how we can attempt such an examination. The book does this via a number of ‘case-studies’ which approach the subject in different ways: J.M. Keynes and his analysis of British social structures; the political career of Harold Nicolson and his understanding of democratic politics; the novels of A.J. Cronin, especially The Citadel, and what they tell us about the definition of democracy in the interwar years. The book also investigates the evolution of the British party political system until the present day and attempts to suggest why it has become so apparently unstable. There are also two chapters on sport as representative of the British social system as a whole as well as the ways in which the British influenced the sporting systems of other countries. The book has a marked comparative theme, including one chapter which compares British and Australian political cultures and which shows British democracy in a somewhat different light from the one usually shone on it. The concluding chapter brings together the overall argument.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


Sign in / Sign up

Export Citation Format

Share Document