scholarly journals Measurement of the Parameters of Multiple Sinusoids Based on Binary Data

Author(s):  
Paolo Carbone

<p>This paper introduces a novel procedure for quick estimation of the parameters of a sum of sinusoidal signals based on one-bit measurements. Amplitude, phases and, frequencies of the signal components are assumed unknown, as well as the threshold level of the comparator used to produce measurement results. To provide enough information at the one-bit quantizer input, a sinewave is assumed to dither one of the two comparator's inputs. To ease the procedure's application, only the peak-to-peak amplitude of this dither signal is assumed known. Theoretical, simulation-based and experimental results validate the presented approach.</p>

2021 ◽  
Author(s):  
Paolo Carbone

<p>This paper introduces a novel procedure for quick estimation of the parameters of a sum of sinusoidal signals based on one-bit measurements. Amplitude, phases and, frequencies of the signal components are assumed unknown, as well as the threshold level of the comparator used to produce measurement results. To provide enough information at the one-bit quantizer input, a sinewave is assumed to dither one of the two comparator's inputs. To ease the procedure's application, only the peak-to-peak amplitude of this dither signal is assumed known. Theoretical, simulation-based and experimental results validate the presented approach.</p>


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1134 ◽  
Author(s):  
Mario Monzón ◽  
Rubén Paz ◽  
Martí Verdaguer ◽  
Luis Suárez ◽  
Pere Badalló ◽  
...  

The use of natural fibres allows reducing environmental impact, due to their natural renewable origin and the lower energy needed for their production and processing. This work presents the mechanical characterization of a newly developed technical textile, with banana fibre treated by enzymes, comparing experimental results with numerical simulation based on the definition of the unit cell at micromechanical level. The experimental test shows that the composite with the fabric of banana fibre presents worse mechanical behaviour than the one with commercial flax fibre. The presence of wool, necessary for producing the yarn, reduces the mechanical properties of the banana textile. The numerical simulation had an acceptable error compared with the experimental results, with a global average error of 9%, showing that the predictive modelling based on the multiscale method is suitable for the design process of this kind of composite.


1996 ◽  
Vol 324 ◽  
pp. 163-179 ◽  
Author(s):  
A. Levy ◽  
G. Ben-Dor ◽  
S. Sorek

The governing equations of the flow field which is obtained when a thermoelastic rigid porous medium is struck head-one by a shock wave are developed using the multiphase approach. The one-dimensional version of these equations is solved numerically using a TVD-based numerical code. The numerical predictions are compared to experimental results and good to excellent agreements are obtained for different porous materials and a wide range of initial conditions.


1998 ◽  
Vol 30 (04) ◽  
pp. 1027-1057 ◽  
Author(s):  
Philippe Picard

Modelling malaria with consistency necessitates the introduction of at least two families of interconnected processes. Even in a Markovian context the simplest fully stochastic model is intractable and is usually transformed into a hybrid model, by supposing that these two families are stochastically independent and linked only through two deterministic connections. A model closer to the fully stochastic model is presented here, where one of the two families is subordinated to the other and just a unique deterministic connection is required. For this model a threshold theorem can be proved but the threshold level is not the one obtained in a hybrid model. The difference disappears only when the human population size approaches infinity.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


2011 ◽  
Vol 189-193 ◽  
pp. 3191-3197
Author(s):  
Qiu Lian Dai ◽  
Can Bin Luo ◽  
Fang Yi You

In this paper, metal-bonded diamond wheels of different sized abrasive grain with different porosity were fabricated. Grinding experiments with these wheels on three kinds of materials were carried out under different grinding conditions. Experimental results revealed that wheel with high porosity (38%) had smaller grinding forces and specific energy than the one with a medium porosity (24%) on grinding G603. However, on grinding harder materials like Red granite or ceramics of Al2O3, the wheel with 38% porosity had bigger grinding forces and specific energy than the wheel with 24% porosity. Both wheels exhibited good self-sharpening capability during the grinding process of G603 and Red granite, but on grinding ceramics of Al2O3 the wheel with 38% porosity displayed in dull state during the grinding process . With the same porosity, the grinding forces of the wheel with a grain size of 230/270 US mesh were lower than the one with a grain size of W10 when grinding Red granite and ceramics of Al2O3. However revising results were obtained on grinding G603.


Author(s):  
Małgorzata Sztubecka ◽  
Maria Mrówczyńska ◽  
Anna Bazan-Krzywoszańska ◽  
Marta Skiba

Noise can have many harmful effects on the recipients, however people exposed to noise on a long-term and regular basis can get used to it, even if the permissible levels are exceeded. In cities, green areas and park systems are provided to create a climate for rest and relaxation. Spa parks are a special kind of such park systems, which – in addition to the above-mentioned features – support therapies offered by spa facilities located there. On the one hand, patients and visitors appreciate various social and entertainment events held there, but – on the other – a multitude of sounds associated with them may reduce the comfort of their stay. The aim of this paper is to analyse the relationship between the results of noise measurements and the human perception of noise within the impact zone. The examined area is a spa park in the health resort district of Inowrocław, where seasonal measurements (taken in summer and winter) provided a basis for the determination of the connection between the measured values of equivalent sound level and the noise level perceived by surveyed people. A statistical analysis was performed to take into account the correlation between the obtained measurement results and the human perception of noise. It shows some differences in the perception of heard sounds. The results allow an evaluation of the soundscape of the analysed area.


Author(s):  
G. P. Ong ◽  
T. F. Fwa ◽  
J. Guo

Hydroplaning on wet pavement occurs when a vehicle reaches a critical speed and causes a loss of contact between its tires and the pavement surface. This paper presents the development of a three-dimensional finite volume model that simulates the hydroplaning phenomenon. The theoretical considerations of the flow simulation model are described. The simulation results are in good agreement with the experimental results in the literature and with those obtained by the well-known hydroplaning equation of the National Aeronautics and Space Administration (NASA). The tire pressure–hydroplaning speed relationship predicted by the model is found to match well the one obtained with the NASA hydroplaning equation. Analyses of the results of the present study indicate that pavement microtexture in the 0.2- to 0.5-mm range can delay hydroplaning (i.e., raise the speed at which hydroplaning occurs). The paper also shows that the NASA hydroplaning equation provides a conservative estimate of the hydroplaning speed. The analyses in the present study indicate that when the microtexture of the pavement is considered, the hydroplaning speed predicted by the proposed model deviates from the speed predicted by the smooth surface relationship represented by the NASA hydroplaning equation. The discrepancies in hydroplaning speed are about 1% for a 0.1-mm microtexture depth and 22% for a 0.5-mm microtexture depth. The validity of the proposed model was verified by a check of the computed friction coefficient against the experimental results reported in the literature for pavement surfaces with known microtexture depths.


Author(s):  
Juergen Perl

Processes in sport like motions or games are influenced by communication, interaction, adaptation, and spontaneous decisions. Therefore, on the one hand, those processes are often fuzzy and unpredictable and so have not extensively been dealt with, yet. On the other hand, most of those processes structurally are roughly determined by intention, rules, and context conditions and so can be classified by means of information patterns deduced from data models of the processes. Self organizing neural networks of type Kohonen Feature Map (KFM) help for classifying information patterns – either by mapping whole processes to corresponding neurons (see Perl & Lames, 2000; McGarry & Perl, 2004) or by mapping process steps to neurons, which then can be connected by trajectories that can be taken as process patterns for further analyses (see examples below). In any case, the dimension of the original data (i.e. the number of contained attributes) is reduced to the dimension of the representing neuron (normally 2 or 3), which makes it much easier to deal with. Additionally, extensions of the KFM-approach are introduced, which are able to flexibly adjust the net to dynamically changing training situations. Moreover, those extensions allow for simulating adaptation processes like learning or tactical behaviour. Finally, a current project is introduced, where tactical processes in soccer are analysed under the aspect of simulation-based optimization.


Sign in / Sign up

Export Citation Format

Share Document