scholarly journals Laboratory Investigation on the Shrinkage Cracking of Waste Fiber-Reinforced Recycled Aggregate Concrete

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1196 ◽  
Author(s):  
Xiaoxin Wu ◽  
Jinghai Zhou ◽  
Tianbei Kang ◽  
Fengchi Wang ◽  
Xiangqun Ding ◽  
...  

This paper aims to study the effectiveness of adding waste polypropylene fibers into recycled aggregate concrete (RAC) on shrinkage cracking. The influences of fiber properties (length and content) on the shrinkage performance of RAC are investigated. Firstly, through the plat-ring-type shrinkage test and free shrinkage test, both of the early age and long-term shrinkage performance of waste fiber recycled concrete (WFRC) were measured. Then, X-ray industrial computed tomography (ICT) was carried out to reflect the internal porosity changes of RAC with different lengths and contents of fibers. Furthermore, the compressive strength and flexural strength tests are conducted to evaluate the mechanical performance. The test results indicated that the addition of waste fibers played an important role in improving the crack resistance performance of the investigated RAC specimens as well as controlling their shrinkage behaviour. The initial cracking time, amount and width of cracks and shrinkage rate of fiber-reinforced specimens were better than those of the non-fiber-reinforced specimen. The addition of waste fibers at a small volume fraction in recycled concrete had not obviously changed the porosity, but it changed the law of pore size distribution. Meanwhile, the addition of waste fibers had no significant effect on the compressive strength of RAC, but it enhanced the flexural strength by 43%. The specimens reinforced by 19-mm and 0.12% (volume fraction) waste fibers had the optimal performance of cracking resistance.

2017 ◽  
Vol 11 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Huaxin Liu ◽  
Jianwei Yang ◽  
Xiangqing Kong ◽  
Xuxu Xue

In order to study the basic mechanical properties of basalt fiber reinforced recycled aggregate concrete, the concrete mix ratio, the length and the volume mixing ratio of chopped basalt fiber yarn are designed for changing factors. A total of 324 specimens have been completed for this investigation. The compressive strength, splitting tensile strength, elastic modulus and axial compressive strength of basalt fiber recycled concrete have carried on the experimental study and theoretical analysis as 81 specimens, respectively. In all specimens, coarse aggregate were replaced by recycled aggregate with a replacement rate of 100%. Experimental results show that the failure process and failure pattern of basalt fiber recycled concrete and ordinary concrete are similar; With the improvement of concrete strength grade; When the volume mixing ratio of chopped basalt fiber yarn is 0.2%, the mechanic performance can effectively improve, and the length of chopped basalt fiber has less effect on the mechanical indexes; The conversion relation between common concrete mechanics index is no longer suitable for basalt fiber recycled concrete, new conversion formulas for basalt fiber recycled concrete between the mechanics index were presented through fitting experimental data.


Recycled aggregates (RCA) are the aggregates which are made up of crushed, inorganic particles that are obtained from the construction demolition debris. Now a day’s protection of environment is the ultimate challenge to the society. So the usage of RCA’s is the best alternative for the aggregates which are obtained naturally in the construction activity. The scope of using these recycled concrete aggregates is increasing day by day. It reduces the cost effectively as we are using waste concrete as recycled aggregates. The main focus of this paper is to use find the strength qualities of recycled aggregates so as to use it as an alternative for the natural aggregates in high strength concrete for various construction activities. Comparison of workability, compressive strength, tensile strength, elastic modulus and flexural strength of recycled aggregate concrete is made with natural aggregate concrete. Here M25 grade concrete is taken and the natural aggregates were replaced with recycled aggregates in various percentages of 0%, 25%, 50%, 75% and 100%. The mix design for these replacement ratios are done by using code of IS 10262-2009. In order to determine the properties which were mentioned above a total of 60 cubes, 10 beams and 40 cylinders were casted. The compressive strength and tensile strength of RCA concrete have been determined for 7 days and 28 days where as the modulus of elasticity and the flexural strength of RCA concrete are determined after curing for the period of 28 days. The tests done on RCA concrete are compared with concrete which is obtained by natural aggregates As per IS codification the parameters which were determined are reducing moderately as the amount of aggregates which are recycled is being raised


2021 ◽  
Vol 17 (4) ◽  
pp. 306-311
Author(s):  
S.A. Alabi ◽  
C. Arum

The increasing demand, diminishing supplies, and growing pressure on natural resources have necessitated recycling and reusing waste. Several kinds of research have been done on the reuse and recycling of debris from building projects. Thus, with a view to the reuse of waste materials, the elimination of environmental contamination, the reduction of overhead costs of concrete, and the extension of the service life of concrete structures, this research aimed to study the feasibility of utilizing recycled concrete aggregate (RCA) with constant inclusion of waste steel fibre (LWSF) in concrete by evaluating its workability, compressive and splitting tensile strengths. A concrete mix ratio of 1:2:4 by weight of cement, sand, and granite was adopted with a water-cement ratio of 0.45. Five different concrete mixes were prepared in this study; one normal aggregate concrete (NAC) and four (4) other mixes with 25%, 50%, 75%, and 100% recycled aggregate content with a constant 1.5% addition of LWSF. The result of workability shows a reduction with an increase in the percentage replacement level. The recycled aggregate concrete (RAC) was characterized by lower compressive strength as compared with the NAC. When the replacement ratio increased from 25% to 50%, a significant reduction of about 14% and 30% were observed in the compressive strength at 7-days, but at 28-days slight increase in the compressive strength was observed. Also, a decrease in splitting tensile strength as the percentage replacement of crushed granite (CG) with RCA is increased was observed. Overall, the findings showed that the RAC-containing LWSF is environmentally sustainable and would significantly reduce the global greenhouse impact and building materials' overall quality. Keywords: Recycled concrete, lathe waste, steel fibre, compressive strength, tensile strength


2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


2011 ◽  
Vol 71-78 ◽  
pp. 4471-4475
Author(s):  
Xiao Xiong Zha ◽  
Kai Zhang

Recycled concrete aggregates have large porosity, large water absorption and high crush index. Mechanical properties of recycled concrete aggregates could be improved by adding activated water instead of ordinary water. On the basis of the experimental studies, this paper analyzes the influences on recycled concrete compression strength when using activated water. There are many different factors such as the kinds and amounts of alkali and the water slag ratio affecting the compressive strength of recycle geopolymer. The results show that activated water has a high enhancement on compressive strength of recycled aggregate concrete, and the highest compressive strength of recycled geopolymer is 57.3MPa.


2017 ◽  
Vol 11 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Haicheng Niu ◽  
Yonggui Wang ◽  
Xianggang Zhang ◽  
Xiaojing Yin

Introduction: Freeze-thaw resistance of recycled aggregate concrete with partial or total replacement of recycled aggregate compared with that of natural aggregate concrete was investigated in this paper. Method: Ninety specimens were fabricated to study the influence of different recycled aggregate replacement ratios on the surface scaling, mass loss, and residual compressive strength after 100 freeze-thaw cycles. Results: The experiment results indicate that the type of recycled aggregate and its replacement ratio have significant effects on the freeze-thaw performance. The cubic compressive strength of recycled aggregate concrete is overall slightly lower than that of normal concrete. After 100 freeze-thaw cycles, the compressive strength decreases and the reduction extent increases with increasing replacement rate of recycled aggregate. The surface scaling of reinforced recycled concrete prisms tends to be more severe with the increase of freeze-thaw cycles. Conclusion: Furthermore, a notable rise in mass loss and the bearing capacity loss is also found as the substitution ratio increases. Under the same replacement rate, recycled fine aggregate causes more negative effects on the freeze-thaw resistance than recycled coarse aggregate.


2021 ◽  
Vol 60 (1) ◽  
pp. 578-590
Author(s):  
Zhong Xu ◽  
Zhenpu Huang ◽  
Changjiang Liu ◽  
Xiaowei Deng ◽  
David Hui ◽  
...  

Abstract Geopolymer cementitious materials and recycled aggregate are typical representatives of material innovation research in the engineering field. In this study, we experimentally investigated a method to improve the performance of geopolymer-recycled aggregate concrete (GRAC). The recycled concrete aggregates and steel fiber (SF), fly ash (FA), metakaolin (MK), and sodium silicate solution were used as the main raw materials to prepare fiber-reinforced geopolymer-recycled aggregate concrete (FRGRAC). First, the orthogonal test was carried out to study the GRAC, and the optimal mix proportion was found. Second, building on the optimal mix proportion, the effects of the SF content on the slump, 7 and 28 days compressive strength, tensile strength, and flexural strength of FRGRAC were further studied. Finally, the microscopic mechanism of FRGRAC was studied by scanning electron microscopy (SEM). The study results indicate that the slump continues to decrease as the fiber content increases, but the compressive strength, tensile strength, and flexural strength increase to a certain extent. Through SEM analysis, it is found that SF restrains the development of cracks and improves the strength of concrete.


2019 ◽  
Vol 303 ◽  
pp. 05004
Author(s):  
Khaoula NAOUAOUI ◽  
Azzeddine BOUYAHYAOUI ◽  
Toufik CHERRADI

The field of construction is evolving rapidly over the last decade. This is justified by the evolution of human activity in various fields mainly tourism, industry … and the aging of several buildings which implies a renovation or a demolition/re-construction. These construction activities involve a large need for aggregates for new construction and a large tonnage of waste from demolitions. In order to remedy this, various stakeholders in the field (suppliers, cement works, research centers, etc.) have valued recycled aggregate concrete (RAC). Recycled aggregates concrete is considered a new type of concrete based on the use of aggregates retrieved from the demolished structures instead of natural aggregates. This replacement affects, for sure, the characteristics of the concrete produced specially the mechanical properties. Developed countries have made a great progress in normalizing the use of recycled aggregates (RA) in concrete implementation as a result of many studies done since 80’s. In Morocco, recycled aggregates do not have any specific standards, and is used mainly in roads and pavements construction. Even if it’s not normalized this use is not recent, in 1999 during the rehabilitation of the expressway road of Casablanca which was severely damaged on both channels, the authorities have opted for the reuse of aggregates instead of reloading the existing pavement with a new one. The study is based on the use of recycled concrete crushed from an old building in Rabat- Morocco as aggregates and compared it with naturel aggregates from Morocco to determinate the effect of this replacement on several characteristics of concrete. This article is aiming to investigate experimentally the effect of RA in concrete using different replacement levels, different types of adjuvant and different percentages of it. The results show that over 30% of replacement, the compressive strength decreases considerably for basic concrete. In order to increase the compressive strength for the RAC with a percentage of replacement over 50%, we used different types of additives (Plasticizer, superplasticizer and new generation superplasticizer) and different percentage of it (0.5%, 1% and 1.5%): We concludes that, for our case, the add of plasticizer gives the best result and that the 1% replacement is the optimum percentage. The tests done on RCA made by plasticizer with different replacement level confirm the results without plasticizer: Compressive strength decreases when the replacement percentage increases.


2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Sallehan Ismail ◽  
Mahyuddin Ramli

This study investigates the effect of inclusion of polyolefin and polypropylene fibers at various volume fractions in single and hybrid forms on the mechanical properties of recycled aggregate concrete (RAC) mix that consists of treated coarse recycled concrete aggregate (RCA). Testing parameters, such as compressive strength, flexural strength, static modulus of elasticity, and impact load resistance, are utilized to evaluate the mechanical strength of specimens. The various properties of the modified RAC are also analyzed and compared with those of normal concrete and unmodified RAC specimens. Findings indicate that the mechanical strength properties of RAC mixture using treated RCA were significantly enhanced by adding fibers. The overall optimized mechanical strength results could be obtained in RAC mixtures with fiber in hybrid form, where their compressive strength at long-term curing age, can be significantly improved by 7% upto 11% higher than normal concrete. In addition, RAC mix with hybrid fibers produced the highest flexural strength and impact load resistance by an increase of 5% and 175%, respectively as compared with the control concrete.  


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Tan ◽  
Chenxu Zhou ◽  
Jinzhi Zhou

Steel fiber recycled aggregate concrete (SFRAC) is mainly used in roads, bridges, and railways that are subjected to bear wheel load. This paper presents a comparative experimental study on the flexural fatigue behavior of the SFRAC, the natural aggregate concrete (NAC), and the recycled aggregate concrete (RAC). The results show that, with the use of 1.0% volume fraction steel fiber, the flexural strength of SFRAC exceeds the flexural strength of NAC (around 0.3%), and the fatigue lives of RAC have been found to be lower by 19.9% and 53.4% compared to SFRAC at stress levels S = 0.9 and S = 0.7. The fatigue strain of SFRAC follows the three-stage law, and the fatigue strain of SFRAC develops more slowly than that of RAC at the same stress level. Two-parameter Weibull distribution is fitted to the test data to generate fatigue models at different survival probabilities, and fatigue life can be accurately predicted using the developed model. Therefore, it is feasible to replace the natural concrete with the recycled aggregate concrete with appropriate steel fiber content in some aspects, which is of great significance to green development.


Sign in / Sign up

Export Citation Format

Share Document