scholarly journals Nonlinear Fatigue Damage Model of Asphalt Mixture Based on Dynamic Modulus and Residual Strength Decay

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2236 ◽  
Author(s):  
Hongfu Liu ◽  
Xinyu Yang ◽  
Chengdong Xia ◽  
Jianlong Zheng ◽  
Tuo Huang ◽  
...  

In order to describe the fatigue damage state of asphalt mixture more reasonably, direct tensile tests of the fatigue and the residual strength under stress levels of 1.00 MPa, 0.50 MPa and 0.25 MPa with five parallel tests were carried out. The trabecular specimens of AC-13C asphalt mixture (25 cm × 5 cm × 5 cm) were manufactured with Styrene-Butadiene-Styrene (SBS) modified asphalt, aggregate basalt and limestone mineral filler. The optimum asphalt-aggregate ratio was 5.2%. The dynamic modulus decay and the residual strength decay were termed as the damage variables to evaluate the fatigue damage process of asphalt mixtures, respectively. Based on the test results, the decay patterns of the dynamic modulus and the residual strength during fatigue tests under different stress states were revealed, and the model and the parameters of fatigue damage according to the corresponding decay patterns were obtained. Then, based on the assumption that the residual strength and dynamic modulus depend on the same damage state, the relationship between the two damage definitions was given, and the residual strength-dynamic modulus coupled model was established. The results showed that the residual strength-dynamic modulus coupled model could better describe the fatigue damage evolution law of asphalt mixture, and the parameter of this coupled model could be obtained by less residual strength tests. A modified formula for calculating the damage variables associated with residual strength and dynamic modulus was proposed based on the relationship between two kinds of damage variables.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yazhen Sun ◽  
Chenze Fang ◽  
Dong Fan ◽  
Jinchang Wang ◽  
Xuezhong Yuan

The laboratory investigations of fatigue damage constitutive equation of asphalt mixture were carried out by three-point bending fatigue tests. The three-point bending fatigue tests were performed at three levels of stress-strength ratio (SSR), temperature, and loading rate. The coupled multifactor (stress-strength ratio, temperature, and loading rate) fatigue life equation was established, which can well predict the fatigue life of the asphalt mixture. Both a damage model and a damage evolution equation have been established based on the E-N curve, which indicate that fatigue damage evolution is nonlinear and consists of three stages. The sensitivity analysis of damage model parameters indicates that each parameter has different effects on the three stages of damage evolution. Based on the researches above, the fatigue damage constitutive equations were finally built based on the σ-ε curves, which consist of two parts: the damage accumulation stage and the fatigue failure stage. The elasticity-power hardening model was used to describe the constitutive relation of damage accumulation stage. The elasticity-power hardening model and the Sidoroff damage model were used to describe the constitutive relation of damage failure stage. The constitutive equations can well characterize the fatigue damage performance of the asphalt mixtures under cyclic loading.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5653
Author(s):  
Chao Wang ◽  
Jiwen Zhang

Based on tension–tension fatigue tests, this paper investigated the mechanical property degradation of carbon fiber reinforced polymer (CFRP) tendons from a macroscopic perspective. According to the degradation regularity, this paper proposed a normalized phenomenological fatigue model based on the residual stiffness/strength of CFRP tendons during the fatigue loading process. In this paper, the residual stiffness of CFRP tendons were tested at five stress ranges, while the residual strength was tested at four stress ranges. In order to validate the reliability and applicability of proposed fatigue damage model, the predictions of proposed model and cited models from the literature are discussed and compared. Furthermore, experimental results from literatures were adopted to verify the accuracy of the proposed model. The results showed that the proposed model is applicable to predict both residual stiffness and residual strength throughout fatigue life cycle and has a better accuracy than models from the literature. Moreover, the three-stage degradation can be observed from the degradation processes of stiffness and strength at each stress level.


Author(s):  
Sonja Pape ◽  
Kangjin Lee ◽  
Cassie Castorena ◽  
Y. Richard Kim

The use of 38-mm-diameter small specimens for uniaxial dynamic modulus and cyclic fatigue asphalt mixture performance testing offers a significant opportunity to improve the efficiency of laboratory-fabricated specimen testing because multiple test specimens can be extracted per Superpave gyratory-compacted (SGC) sample. This study seeks to optimize the procedure used for the extraction of small specimens from SGC samples for dynamic modulus and cyclic fatigue tests. To this end, small cylindrical specimens were cored horizontally and vertically from SGC samples and subjected to performance testing. The dynamic modulus and fatigue test results indicate that the effects of anisotropy are minimal. However, all of the horizontally extracted small specimens exhibited fatigue failure at the specimen ends, outside the range of the gauges; the failure was likely due to the peripheral air void gradients in the SGC samples. Therefore, the authors concluded that small specimens should be vertically cored from SGC samples for the laboratory fabrication of small specimens. Specifically, four small specimens were cored vertically from the inner 100 mm of SGC samples where the air void content is relatively uniform. Four mixtures with different nominal maximum aggregate sizes (NMASs) were used to prepare small specimens using the proposed extraction procedure. These specimens were subjected to dynamic modulus and cyclic fatigue testing. The results demonstrate an increase in specimen-to-specimen variability with an increase in NMAS, which also is expected in large specimen testing.


2012 ◽  
Vol 457-458 ◽  
pp. 1159-1162
Author(s):  
Yu Ming Li ◽  
Hong Bai Bai ◽  
Jian Chun Yang

The damaging variable was defined firstly, mean while the fatigue character of metal rubber was discussed. Then the relationship between damaging variable and cyclic loading times had been summarized through fatigue tests. Finally observed the pattern of fracture face, cavities and flaws of the fatigue wires inner the metal rubber components with electronic scanning microscope, some technical methods of improving the wearing resistivity of metal rubber material had been brought forward.


2016 ◽  
Vol 84 ◽  
pp. 53-58 ◽  
Author(s):  
Aleksandr Sergeevitсh Voznesenskii ◽  
Yaroslav Olegovich Kutkin ◽  
Maksim Nikolaevich Krasilov ◽  
Aleksandr Aleksandrovich Komissarov

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
David M. Pierce ◽  
Sheri D. Sheppard ◽  
Arlo F. Fossum ◽  
Paul T. Vianco ◽  
Mike K. Neilsen

A unified creep plasticity damage (UCPD) constitutive model was developed to predict the fatigue of 95.5Sn–3.9Ag–0.6Cu solder joints. Compression, stress-strain and creep properties were generated in previous studies of this solder. Crack damage was reflected in a single state variable, Dω, in the model. Isothermal fatigue tests were performed at 25°C, 100°C, and 160°C using a double-lap shear test specimen. A new approach to fitting the revised damage model is proposed based on finite element analysis (FEA) simulation of the load decay of the fatigued solder material. Accurate predictions required that those parameters be temperature dependent. The UCPD constitutive model was successfully implemented as a subroutine in the commercial finite element code ANSYS®. Consistent predictions were obtained as demonstrated by a comparison of results generated from FEA simulation of the test assembly against analogous experimental results.


Author(s):  
Xiaobin Le

Abstract One typical widely-accepted approach for describing the fatigue test data is the P-S-N curve approach. However, the P-S-N curve approach has some issues such as: (1) If there are only a few fatigue test data at a fatigue test stress level, the P-S-N curve approach is not valid due to the small sample size; (2) When the total number of fatigue tests under different stress levels might be larger such as more than 30 even though the number of fatigue tests at the same stress level is small, the P-S-N curve cannot be used to analyze such set of fatigue data; (3) It is difficult to calculate the reliability of a component under a cyclic stress level when the probabilistic distribution function under this stress level is not available in the P-S-N curves. The author has proposed the K-D probabilistic fatigue damage model (K-D model) to overcome those issues. The 6061-T6 10-gauge sheet-type flat fatigue specimen was designed, manufactured, and tested on the Instron 8081 fatigue test machine to verify this K-D model. The fatigue tests were under five different cyclic axial loadings with a total of 195 tests. In this paper, the fatigue test data will be analyzed by the P-S-N curve approach and the K-D model. The systematic comparisons between the P-S-N curve approach and the K-D model have approved and verified that the K-D model can be used to analyze and to describe the fatigue test data under all different fatigue stress levels and can be used to calculate the reliability of a component under any type of cyclic fatigue loading.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Danhua Wang ◽  
Xunhao Ding ◽  
Linhao Gu ◽  
Tao Ma

Focused on the fatigue performance of the asphalt mortar, this study proposed an assessment model for fatigue damage evolution based on the continuum mechanics. From the perspective of the material scale rather than the macrostructure, the proposed damage model was set by concentrating on the stress-strain state of a tiny point which could characterize the material performance accurately. By the mechanical formula derivation and based on the four-point bending fatigue tests, the damage evolution law was determined and then the proposed model was verified. Based on the finite element method (FEM), a commercial software named ABAQUS was utilized to develop the random mixtures consisting of coarse aggregates, mortar, and voids. Eventually, combined with the damage model and virtual simulation of bending tests, the factors influencing the fatigue resistance of the whole asphalt mixtures were analyzed further.


Author(s):  
Xiaobin Le

Abstract The 6061-T6 10-gauge sheet-type flat fatigue specimen was designed, manufactured, and tested on an Instron 8081 fatigue test machine. The fatigue tests were performed under five different cyclic axial loads with 195 tests. This paper will display how to use these 195 test data under different cyclic axial loads to build a probabilistic fatigue damage model. The model is validated by the results obtained from the traditional P-S-N curve approach. One advantage of this probabilistic fatigue damage model is that it can calculate the reliability of a component under any type of cyclic loads at any cyclic load level.


Sign in / Sign up

Export Citation Format

Share Document