Optimization of the Laboratory Fabrication of Small Specimens for Asphalt Mixture Performance Testing

Author(s):  
Sonja Pape ◽  
Kangjin Lee ◽  
Cassie Castorena ◽  
Y. Richard Kim

The use of 38-mm-diameter small specimens for uniaxial dynamic modulus and cyclic fatigue asphalt mixture performance testing offers a significant opportunity to improve the efficiency of laboratory-fabricated specimen testing because multiple test specimens can be extracted per Superpave gyratory-compacted (SGC) sample. This study seeks to optimize the procedure used for the extraction of small specimens from SGC samples for dynamic modulus and cyclic fatigue tests. To this end, small cylindrical specimens were cored horizontally and vertically from SGC samples and subjected to performance testing. The dynamic modulus and fatigue test results indicate that the effects of anisotropy are minimal. However, all of the horizontally extracted small specimens exhibited fatigue failure at the specimen ends, outside the range of the gauges; the failure was likely due to the peripheral air void gradients in the SGC samples. Therefore, the authors concluded that small specimens should be vertically cored from SGC samples for the laboratory fabrication of small specimens. Specifically, four small specimens were cored vertically from the inner 100 mm of SGC samples where the air void content is relatively uniform. Four mixtures with different nominal maximum aggregate sizes (NMASs) were used to prepare small specimens using the proposed extraction procedure. These specimens were subjected to dynamic modulus and cyclic fatigue testing. The results demonstrate an increase in specimen-to-specimen variability with an increase in NMAS, which also is expected in large specimen testing.

Author(s):  
Kangjin Lee ◽  
Sonja Pape ◽  
Cassie Castorena ◽  
Y. Richard Kim

The use of small specimen geometries in asphalt mixture performance testing to enable the testing of as-built pavement layers has been gaining attention in recent years. Small specimens could also improve the testing efficiency of laboratory-fabricated specimens by allowing the extraction of multiple test specimens per gyratory-compacted sample. Rigorous assessment of the small specimen geometries is required before the use of such geometries is standardized. In this study, small specimens were evaluated for dynamic modulus and simplified viscoelastic continuum damage fatigue. Three specimen geometries (100-mm- and 38-mm-diameter cylindrical specimens and 25- × 50-mm prismatic specimens) were compared by using five mixtures with a nominal maximum aggregate size (NMAS) ranging from 9.5 to 25.0 mm. The results show that the dynamic modulus and phase angle master curves agreed at low and intermediate temperatures, regardless of the NMAS values of the mixture. At the high temperature, the small specimen dynamic modulus values were slightly higher and the phase angle values were slightly lower than those of the large specimens. The specimen-to-specimen variability for the large and small specimens was comparable. The fatigue test results for the mixtures evaluated were comparable, except for the 25-mm mixture, which proved problematic in the testing of both small and large specimens. Pavement performance was predicted by the layered viscoelastic analysis for critical distresses program by using the test results for the small and large specimens. These results suggest that specimen geometry had a minimal effect on pavement fatigue damage predictions, which indicates promise for the use of small specimen geometries in practice.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1230 ◽  
Author(s):  
Tan Hung Nguyen ◽  
Jaehun Ahn ◽  
Jaejun Lee ◽  
Jin-Hwan Kim

Porous asphalt has been used for permeable pavement to improve safety of roadways and the effectiveness of storm water management. As a surface drainage layer with frequent exposure to water, this material is affected by moisture. In this study, dynamic modulus tests were performed on both moisture unconditioned and conditioned specimens to characterize viscoelastic properties of porous asphalt mixture. The dynamic modulus values of porous asphalt materials with air void content of 9.0% and 20.5% were investigated at dry condition and after specified moisture conditioning cycles. One cycle of moisture conditioning procedure included placing specimens in water tank at 60 °C for 24 h, and then in another water tank at 25 °C for additional 2 h. The results showed that porous asphalt mixture with lower air void content resulted in higher values of dynamic modulus, and these values of porous asphalt with air void content of 9.0% was about 1.5 to 3.0 times that of porous asphalt with air void content of 20.5%. Higher value of the first number of performance graded binder (average 7-day maximum pavement design temperature) seems to make the dynamic modulus values at high temperatures larger. After moisture conditioning, the dynamic modulus of porous asphalt mixture increased, overall, especially at low temperatures. The appropriated selection of asphalt binder, a weakening of asphalt due to moisture damage can be reduced.


Author(s):  
Kangjin “Caleb” Lee ◽  
Sonja Pape ◽  
Cassie Castorena ◽  
B. Shane Underwood ◽  
Y. Richard Kim

With an increase in small-specimen cyclic fatigue testing using the Asphalt Mixture Performance Tester (AMPT), researchers have observed that the strain-selection guidelines in AASHTO TP 107-14 that are intended for large AMPT cyclic fatigue tests are inadequate for testing small specimens. The machine compliance factor is significantly different for testing small specimens compared with large specimens because of different required load levels, resulting in a significant offset in the relationship between the input strain and the number of cycles to failure. To this end, this paper presents the development and verification of a phenomenological model that relates strain levels to dynamic modulus and number of cycles to failure for small-specimen AMPT cyclic fatigue tests, as well as the development of a corresponding stepped strain-level determination procedure that takes into account cases when the initially selected strain-level results in an unexpected number of cycles to failure. The final procedure includes a table with input strain levels and step strain increments for a wide range of dynamic modulus values as well as a flow chart to guide the use of the step strain adjustment procedure.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


Author(s):  
Amir Golalipour ◽  
Varun Veginati ◽  
David J. Mensching

In the asphalt materials community, the most critical research need is centered around a paradigm shift in mixture design from the volumetric process of the previous 20-plus years to an optimization procedure based on laboratory-measured mechanical properties that should lead to an increase in long-term pavement performance. This study is focused on advancing the state of understanding with respect to the value of intermediate temperature cracking tests, which may be included in a balanced mix design. The materials included are plant-mixed, laboratory-compacted specimens reheated from the 2013 Federal Highway Administration’s (FHWA’s) Accelerated Loading Facility (ALF) study on reclaimed asphalt pavement/reclaimed asphalt shingle (RAP/RAS) materials. Six commonly discussed intermediate temperature (cracking and durability) performance testing (i.e., Asphalt Mixture Performance Tester [AMPT] Cyclic Fatigue, Cantabro, Illinois Flexibility Index Test [I-FIT], Indirect Tensile Cracking [ITC, also known as IDEAL-CT], Indirect Tensile Nflex, and Texas Overlay Test) were selected for use in this study based on input from stakeholders. Test results were analyzed to compare differences between the cracking tests. In addition, statistical analyses were conducted to assess the separation among materials (lanes) for each performance test. Cyclic fatigue and IDEAL-CT tests showed the most promising results. The ranking from these two tests’ index parameters matched closely with ALF field performance. Furthermore, both showed reasonable variability of test data and they were successful in differentiating between different materials.


2011 ◽  
Vol 243-249 ◽  
pp. 4220-4225
Author(s):  
Rui Bo Ren ◽  
Li Tao Geng ◽  
Li Zhi Wang ◽  
Peng Wang

To study the mechanical properties of high modulus asphalt mixtures, dynamic modulus and phase angle of these two mixtures are tested with Simple Performance Testing System under different temperatures, loading frequencies and confining pressures. Testing results show the superiority of high modulus asphalt mixture in aspect of high temperature performance. Furthermore, the changing rules of dynamic modulus and phase angle are also discussed.


2013 ◽  
Vol 723 ◽  
pp. 303-311 ◽  
Author(s):  
Alvaro Garcia ◽  
Jose Norambuena-Contreras ◽  
Manfred N. Partl

Induction heating consists in adding electrically conductive fibers to the asphalt mixture and heating them with an induction heating device. But still, the factors that affect the increase of temperature are not well-known. With this purpose, 25 different mixtures, with the same aggregates distribution and amount of bitumen, but with 2 different lengths, 4 different quantities, and 4 different diameters of steel wool fibers have been considered. The influence of fibers on the air void content, electrical and thermal conductivity and on the induction heating of dense asphalt concrete has been studied. It was found that steel wool fibers increase slightly the electrical and thermal conductivities of dense asphalt concrete. Finally, it has been observed that the temperature reached due to the induction heating, increases with the number of fibers in the mixture and with their diameter.


Author(s):  
David J. Mensching ◽  
Adrian Andriescu ◽  
Christopher DeCarlo ◽  
Xinjun Li ◽  
Jack S. Youtcheff

The use of re-refined engine oil bottoms (REOBs) in asphalt pavements is a topic of much debate because the aging susceptibility and quantity of the additive in the binder may affect field performance. In this study, four mixtures with varying REOB contents (up to 15%) were long-term oven aged by using a high-temperature, short-duration method (135°C, 24 h) and compared with existing data on mixtures aged with more conventional short-term and long-term oven-aging procedures. The recovered binders underwent Superpave® grading, double-edge notched tension, and extended bending beam rheometer testing, and the binders were subjected to dynamic modulus, cyclic fatigue testing in the asphalt mixture performance tester, and thermal stress restrained specimen testing. Results showed a general insensitivity when short-term oven-aged (135°C, 4 h) materials were compared with long-term oven-aged (85°C, 5 days) materials, whereas the aging process at 135°C over 24 h resulted in substantial changes to the stiffness and relaxation properties across high-, intermediate-, and low-temperature modes. The difference between the stiffness-based and slope-based low-temperature performance grades appears to be an indicator for REOB modification, with the test for physical hardening of the binder being more sensitive than standard bending beam rheometer testing. The details in this paper provide information for the asphalt pavement community to consider as specifications. Standard practices are developed to address REOB modification.


2017 ◽  
Vol 44 (4) ◽  
pp. 1-8 ◽  
Author(s):  
T. Kroth ◽  
D. Lellinger ◽  
I. Alig ◽  
M. Wallmichrath

Cyclic fatigue testing and elastomer characterisation were combined to study changes in material properties and network structure of elastomers during thermal ageing. Natural rubber containing a typical additive package with carbon black was studied as a model material. The samples were aged at different temperatures in air or under a nitrogen atmosphere. The fatigue life in number of cycles to failure (S-N curves) was determined from force- and displacement-controlled fatigue tests on tensile bar specimens after different thermal ageing times. Changes in mechanical properties and crosslink density were studied by tensile tests, dynamic mechanical analysis, stress relaxation experiments, compression set measurements, swelling measurements and solid-state NMR. Changes in network density during thermal ageing are related to the interplay between the formation of new crosslinks and chain scission. The average molecular mass of the network chains was found to be a suitable parameter for comparing different characterisation methods. An initial decrease in the molecular mass between two crosslinking points due to post-curing is followed by an increase due to chain scission. A similar trend was found for fatigue life in number of cycles to failure (N) in force-controlled fatigue tests: an increase in N for short ageing times is followed by a decrease after longer ageing times.


Sign in / Sign up

Export Citation Format

Share Document