scholarly journals A New Reversible Phase Transformation of Intermetallic Ti3Sn

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2484
Author(s):  
Minshu Du ◽  
Lishan Cui ◽  
Feng Liu

Ti3Sn has received increasing attention as a high damping metallic material and as an anode material for rechargeable lithium-ion batteries. However, a heated dispute concerning the existence of solid state phase transformation of stoichiometric Ti3Sn impedes its development. Here, thermal-induced reversible phase transformation of Ti3Sn is demonstrated to happen at around 300 K by the means of in-situ variable-temperature X-ray diffraction (XRD) of Ti3Sn powder, which is also visible for bulk Ti3Sn on the thermal expansion curve by a turning at 330 K. The new phase’s crystal structure of Ti3Sn is determined to be orthorhombic with a space group of Cmcm and the lattice parameters of a = 5.87 Å, b = 10.37 Å, c = 4.76 Å respectively, according to selected area electron diffraction patterns in transmission electron microscope (TEM) and XRD profiles. The hexagonal → orthorhombic phase transformation is calculated to be reasonable and consistent with thermodynamics theory. This work contributes to a growing knowledge of intermetallic Ti3Sn, which may provide fundamental insights into its damping mechanism.

2014 ◽  
Vol 47 (3) ◽  
pp. 879-886 ◽  
Author(s):  
He Zheng ◽  
Jianbo Wang ◽  
Zhongling Xu ◽  
Jianian Gui

A previous transmission electron microscopy (TEM) analysis revealed the existence of monoclinic Li2MnO3in the lithium-rich and oxygen-deficient Li1.07Mn1.93O4−δpowder. Interestingly, the monoclinic phase exhibits different nanoscale lamellar variants involving a rotation of the stacking direction by 120 or 240° along the pseudo-threefold axis,i.e.the [103]M//[111]C(M and C denote the monoclinic and cubic phases, respectively) zone axis. Here, a theoretical X-ray diffraction (XRD) study of Li2MnO3employing theDIFFaXprogram is presented. It is found that, with the occurrence of different stacking configurations, the characteristic superstructure reflections with 2θ between 20 and 35° (Cu Kα) in the XRD pattern become more and more broadened with the increasing degree of stacking disorder, indicating that XRD may fall short in detecting the presence of the monoclinic Li2MnO3phase. Moreover, selective peak asymmetry appears when the stacking sequence becomes extremely disordered. Further selected-area electron diffraction and theoretical neutron diffraction investigation may clarify the similar ambiguity concerning the crystal phases of other structurally related compound cathode materials for lithium-ion batteries (e.g.LiNi1/2Mn1/2O2, LiNi1/3Co1/3Mn1/3O2).


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Jia Liu ◽  
Jituo Liu ◽  
Xianhui Wang ◽  
Chong Fu ◽  
Yanlong Wang ◽  
...  

In this paper we investigated the phase-transformation dynamics of the Cu-3Ti-3Ni-0.5Si alloy by applying the Avrami method to phase-transformation dynamics and electrical conductivity based on the relationship between the electrical conductivity and the volume fraction of precipitates in the Cu-3Ti-3Ni-0.5Si alloy. The results corroborated well with the experimental data. The microstructure and precipitated phases were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analysis of the selected-area electron-diffraction patterns indicated that the precipitates formed in the matrix of the Cu-3Ti-3Ni-0.5Si alloy during aging, correspond to the Ni3Ti, Ni3Si, and Ni2Si phases. According to the values of formation enthalpy and cohesive energy determined by first-principle calculations, the formation of the Ni2Si phase is more favorable compared to the Ni3Si and Ni3Ti phases, and the Ni3Ti exhibits improved structural stability compared to the Ni2Si and Ni3Si phases.


2020 ◽  
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

Abstract A new nano-laminated Y3Si2C2 ceramic material, for the first time, was successfully synthesized via in situ reaction between YH2 and SiC by spark plasma sintering. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping was observed at the tip of the Vickers indent. The values of elastic modulus and Vickers hardness of the Y3Si2C2 ceramics sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W m-1 k-1 and 6.3 × 105 S m-1, respectively.


1996 ◽  
Vol 60 (402) ◽  
pp. 799-804
Author(s):  
Ishmael Hassan ◽  
Yasuhiro Kudoh ◽  
Peter R. Buseck ◽  
Eui Ito

AbstractSelected-area electron diffraction patterns for the [110] zone of MgSiO3 perovskite are consistent with the orthorhombic unit cell obtained by X-ray diffraction (a = 4.775, b = 4.929, c = 6.897 Å). Various areas of a crystal fragment show diffuse streaking along c*, and well-developed satellite reflections that give a 3-fold repeat along [10]*. Another fragment shows doubled cell dimensions when viewed down [30]. The variable occurrence of the satellite reflectioncs and diffuse streaking indicate subtle variations in ordering, chemistry, or both. Images obtained by high-resolution transmission electron microscopy contain perfectly ordered regions, out-of-phase boundaries, and intergrowths of the two orthorhombic forms of perovskite.


1997 ◽  
Vol 475 ◽  
Author(s):  
J.D. Jarratt ◽  
T.J. Klemmer ◽  
J.A. Barnard

ABSTRACTThe microstructure of Co90Feio/Ag giant magnetoresistive multilayer films has been investigated using x-ray diffraction (XRD) and cross-sectional transmission electron microscopy. Columnar grains with a (111) fiber growth texture is observed. A comparison is made between the observed layering structure and earlier multilayer schematics based on the literature and magnetic and magnetoresistive measurements as a function of layer thickness. A direct correlation is made between superlattice satellite peak signals from selected area electron diffraction patterns and XRD scans.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1442 ◽  
Author(s):  
Hung ◽  
Wu ◽  
Xu ◽  
Wu

This study investigated the feasibility of using bamboo to prepare biomorphic porous silicon carbide (bio-SiC) ceramics through a combination of sol–gel impregnation and carbothermal reduction. The effects of sintering temperature, sintering duration, and sol–gel impregnation cycles on the crystalline phases and microstructure of bio-SiC were investigated. X-ray diffraction patterns revealed that when bamboo charcoal–SiO2 composites (BcSiCs) were sintered at 1700 °C for more than 2 h, the resulting bio-SiC ceramics exhibited significant β-SiC diffraction peaks. In addition, when the composites were sintered at 1700 °C for 2 h, scanning electron microscopy micrographs of the resulting bio-SiC ceramic prepared using a single impregnation cycle showed the presence of SiC crystalline particles and nanowires in the cell wall and cell lumen of the carbon template, respectively. However, bio-SiC prepared using three and five repeated cycles of sol–gel impregnation exhibited a foam-like microstructure compared with that prepared using a single impregnation cycle. Moreover, high-resolution transmission electron microscopy and selected area electron diffraction revealed that the atomic plane of the nanowire of bio-SiC prepared from BcSiCs had a planar distance of 0.25 nm and was perpendicular to the (111) growth direction. Similar results were observed for the bio-SiC ceramics prepared from bamboo–SiO2 composites (BSiCs). Accordingly, bio-SiC ceramics can be directly and successfully prepared from BSiCs, simplifying the manufacturing process of SiC ceramics.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


Sign in / Sign up

Export Citation Format

Share Document