scholarly journals Characterization of the Elastoplastic Response of Low Zn-Cu-Ti Alloy Sheets Using the CPB-06 Criterion

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3072
Author(s):  
Alister ◽  
Celentano ◽  
Signorelli ◽  
Bouchard ◽  
Pino ◽  
...  

Unlike other HCP metals such as titanium and magnesium, the behavior of zinc alloys has only been modeled in the literature. For the low Zn-Cu-Ti alloy sheet studied in this work, the anisotropy is clearly seen on the stress-strain curves and Lankford coefficients. These features impose a rigorous characterization and an adequate selection of the constitutive model to obtain an accurate representation of the material behavior in metal forming simulations. To describe the elastoplastic behavior of the alloy, this paper focuses on the material characterization through the application of the advanced Cazacu-Plunket-Barlat 2006 (CPB-06 for short) yield function combined with the well-known Hollomon hardening law. To this end, a two-stage methodology is proposed. Firstly, the material characterization is performed via tensile test measurements on sheet samples cut along the rolling, diagonal and transverse directions in order to fit the parameters involved in the associate CPB-06/Hollomon constitutive model. Secondly, these material parameters are assessed and validated in the simulation of the bulge test using different dies. The results obtained with the CPB-06/Hollomon model show a good agreement with the experimental data reported in the literature. Therefore, it is concluded that this model represents a consistent approach to estimate the behavior of Zn-Cu-Ti sheets under different forming conditions.

2017 ◽  
Vol 62 (4) ◽  
pp. 753-774
Author(s):  
M. Abdia ◽  
H. Molladavoodi ◽  
H. Salarirad

Abstract The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.


2013 ◽  
Vol 23 (3) ◽  
pp. 1107-1113 ◽  
Author(s):  
Lin Hua ◽  
Fanzhi Meng ◽  
Yanli Song ◽  
Jianing Liu ◽  
Xunpeng Qin ◽  
...  

2013 ◽  
Author(s):  
Jianhua Jiang ◽  
Houmin Wang ◽  
Junhai Gu

Author(s):  
Y. Kostenko ◽  
K. Naumenko

Many power plant components and joint connections are subjected to complex thermo-mechanical loading paths under severe temperature environments over a long period. An important part in the lifetime assessment is the reliable prediction of stress relaxation using improved creep modeling to avoid possible integrity or functionality issues and malfunction in such components. The aim of this work is to analyze the proposed constitutive model for advanced high chromium steels with the goal of predicting stress relaxation over the long term. The evolution equations of the constitutive model for inelastic material behavior are introduced to account for hardening and softening phenomena. The material properties were identified for 9–12%CrMoV steels in the creep range. The model is applied to the stress relaxation analysis of power plant components. The results for long-term assessment, which are encouragingly close to reality, will be presented and discussed. An outlook on further developments of the model and assessment procedure is also provided.


Author(s):  
Ericka K. Amborn ◽  
Karim H. Muci-Küchler ◽  
Brandon J. Hinz

Studying the high strain rate behavior of soft tissues and soft tissue surrogates is of interest to improve the understanding of injury mechanisms during blast and impact events. Tests such as the split Hopkinson pressure bar have been successfully used to characterize material behavior at high strain rates under simple loading conditions. However, experiments involving more complex stress states are needed for the validation of constitutive models and numerical simulation techniques for fast transient events. In particular, for the case of ballistic injuries, controlled tests that can better reflect the effects induced by a penetrating projectile are of interest. This paper presents an experiment that tries to achieve that goal. The experimental setup involves a cylindrical test sample made of a translucent soft tissue surrogate that has a small pre-made cylindrical channel along its axis. A small caliber projectile is fired through the pre-made channel at representative speeds using an air rifle. High speed video is used in conjunction with specialized software to generate data for model validation. A Lagrangian Finite Element Method (FEM) model was prepared in ABAQUS/Explicit to simulate the experiments. Different hyperelastic constitutive models were explored to represent the behavior of the soft tissue surrogate and the required material properties were obtained from high strain rate test data reported in the open literature. The simulation results corresponding to each constitutive model considered were qualitatively compared against the experimental data for a single projectile speed. The constitutive model that provided the closest match was then used to perform an additional simulation at a different projectile velocity and quantitative comparisons between numerical and experimental results were made. The comparisons showed that the Marlow hyperelastic model available in ABAQUS/Explicit was able to produce a good representation of the soft tissue surrogate behavior observed experimentally at the two projectile speeds considered.


Author(s):  
Eren Billur ◽  
Muammer Koc¸

Hydraulic bulge testing is a material characterization method used as an alternative to tensile testing with the premise of accurately representing the material behavior to higher strain levels (∼70% as appeared to ∼30% in tensile test) in a biaxial stress mode. However, there are some major assumptions (such as continuous hemispherical bulge shape, thinnest point at apex) in hydraulic bulge analyses that lead to uncertainties in the resulting flow stress curves. In this paper, the effect of these assumptions on the accuracy and reliability of flow stress curves is investigated. The goal of this study is to determine the most accurate method for analyzing the data obtained from the bulge testing when continuous and in-line thickness measurement techniques are not available. Specifically, in this study the stress-strain relationships of two different materials (SS201 and Al5754) are obtained based on hydraulic bulge test data using various analysis methods for bulge radius and thickness predictions (e.g., Hill’s, Chakrabarty’s, Panknin’s theories, etc.). The flow stress curves are calculated using pressure and dome height measurements and compared to the actual 3-D strain measurement from a stereo optical and non-contact measurement system ARAMIS. In addition, the flow stress curves obtained from stepwise experiments are compared with the ones from above methods. Our findings indicate that Enikeev’s approach for thickness prediction and Panknin’s approach for bulge radius calculation result in the best agreement with both stepwise experiment results and 3D optical measurement results.


2012 ◽  
Vol 504-506 ◽  
pp. 1029-1034 ◽  
Author(s):  
Bernd Arno Behrens ◽  
Kathrin Voges-Schwieger ◽  
Anas Bouguecha ◽  
Jens Mielke ◽  
Milan Vucetic

Sheet-bulk metal forming is a novel manufacturing technology, which unites the advantages and design solutions of sheet metal and bulk metal forming. To challenge the high forming force the process is superimposed with an oscillation in the main flow of the process. The paper focuses on the characterization of the material behavior under cyclic load and the effects for the sheet bulk metal forming process.


2019 ◽  
Vol 161-162 ◽  
pp. 105034 ◽  
Author(s):  
Xuexi Cui ◽  
Xiangdong Wu ◽  
Min Wan ◽  
Bolin Ma ◽  
Yanling Zhang

2010 ◽  
Vol 150-151 ◽  
pp. 330-333
Author(s):  
Yan Jun Chang ◽  
Ke Shi Zhang ◽  
Gui Qiong Jiao ◽  
Jian Yun Chen

An anisotropic damage constitutive model is developed to describe the damage behavior of C/SiC composites. Different kinematic and isotropic hardening functions were employed in damage yield function to describe accurately the damage nonlinear hardening. The damage variable is defined by the principle of energy equivalence. The degradation of stiffness and the unrecoverable deformation induced by micro-crack propagation were considered in this model. The constants of constitutive model are identified and the damage evolution processes under tensile and shear loading. Uniaxial tension and shear tests have been used to valid the constitutive model to C/SiC composites.


Sign in / Sign up

Export Citation Format

Share Document