scholarly journals Study on the Forming Process and Deformation Behavior of Inner Ring in the Wheel Hub Bearing Based on Riveting Assembly

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3785
Author(s):  
Wei Xiong ◽  
You Wang ◽  
Xiao-Ping Li ◽  
Song Mei ◽  
Zhu-Xin Tian

The orbital riveting process has been successively adopted in the assembly of wheel hub bearing, due to its special merits of high efficiency, low cost, and so on. The forming process and deformation behavior of the inner ring have significant influence on the axial clamping force and bearing clearance, however, which haven’t been addressed yet. In this study, a numerical simulation platform for the assembly of the hub bearing is established by the joint use of the static implicit and dynamic explicit algorithms. Based on the platform, the deformation process and deformation behavior of the inner ring are investigated, along with the interference assembly and riveting assembly on the loading process of the inner ring. Finally, relevant experimental verifications are carried out to consolidate the simulation results. The research findings could be used to guide the design and optimization of the axial clamping force and bearing clearance.

2019 ◽  
Vol 27 (01) ◽  
pp. 1950008 ◽  
Author(s):  
B. G. Prashantha ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham ◽  
M. R. Praveen Kumar

In this paper, the design of 50 W thermoacoustic refrigerators operating with air as working substance at 10 bar pressure and 3% drive ratio for a temperature difference of 28 K is described. The design strategies discussed in this paper help in design and development of low cost thermoacoustic coolers compared to helium as the working substance. The design and optimization of spiral stack and heat exchangers, and the promising 0.2[Formula: see text] and 0.15[Formula: see text] resonator design with taper and divergent section with hemispherical end are discussed. The surface area, volume, length and power density of the hemispherical end design with air as working substance is found better compared to the published 10 and 50 W coolers using helium as the working substance. The theoretical design results are validated using DeltaEC software simulation results. The DeltaEC predicts 51.4% improvement in COP (1.273) at the cold heat exchanger temperature of [Formula: see text]C with air as working substance for the 50[Formula: see text]W 0.15[Formula: see text]TDH resonator design compared to the published 50[Formula: see text]W 0.25[Formula: see text]TDH resonator design with helium as working substance.


2013 ◽  
Vol 418 ◽  
pp. 246-249
Author(s):  
Ting Ping Chang ◽  
Shyh Chour Huang ◽  
Te Fu Huang ◽  
Thanh Phong Dao

This paper aims to study and detect the imperfects of the hollow fasteners with thin flange during cold forging process. In this study, the finite element analysis (FEA) based on 3-D DEFORMTM software to investigate the plastic deformation behavior of the hollow fasteners with thin flange. The simulation results showed that there is a folding phenomenon, which is occurring in the forming process. As a result, it revealed that with using FEA, the imperfects of forming hollow fasteners with the thin flange can be correctly predicted. From that, the occurrence of defects can be effectively prevented in the actual fabricating process. Future work will include an investigation into the optimization of the mold geometric parameters during cold pre-forming process for hollow fasteners with thin flange by comparing the simulative and experimental results.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6112-6117 ◽  
Author(s):  
HUIPING QI ◽  
YONGTANG LI ◽  
JIANHUA FU ◽  
ZHIQI LIU

The cold thread rolling technology was developed rapidly in recent years due to its high efficiency, low cost and perfect mechanical properties of its production. However, researches on the precise thread rolling of the hollow parts were very few. Traditionally, the minimum thickness of the thin-walled threaded parts by thread rolling was mainly determined by the empirical (trial and error) methods. In this study, the forming process of thin-walled thread parts rolled with three thread rolling dies was analyzed. The stress state of the hollow work piece was obtained by solving the statically indeterminate problems. Then, the equations for the minimum wall thickness were derived. Experiments are also performed. The experimental results are generally in good agreement with those by the current theoretical analysis. It could be concluded that the analysis presented in this study can provide a good guidance for the thread rolling of hollow parts.


2013 ◽  
Vol 404 ◽  
pp. 678-681
Author(s):  
Xin Ju Zhang ◽  
Xiu Hong Ma ◽  
Fu Xiang Zhang ◽  
Hui Qin Cao

There are three work posts in this warm extruder: upsetting station backward extrusion station and blanking station. They work continuously. The manipulator is mainly used to passing artifacts from one station to another. The warm extrusion forming process manipulator for steel connecting sleeve typically was designed to reduce labor intensity and enhance production automation level. The machines structure and working principle were described. In the same time, the machine control system that adopts the PLC programmable controller can simplify the control system, and its reliability strengthens further. Practices show that the strapping machine has the advantages of simple structure, high efficiency, low cost and small vibrating noise.


2020 ◽  
Vol 7 (2) ◽  
pp. 238-245
Author(s):  
Sarah El Himer ◽  
◽  
Ali Ahaitouf ◽  

Hybrid Concentrated Photovoltaics (HCPVs) are systems in which additional low-cost silicone solar cells are added to take advantage of the power generated by the diffuse radiation lost when using only multi-junction cells that work only with direct radiation. The work has been tested by simulating the performance of a hybrid CPV system composed of a Fresnel lens associated with a pyramid, multi junction cell as well as additional silicon solar cells. This proposal is compared with an ordinary CPV system and a system based on only silicon solar cells. The simulation results show that the CPV makes it possible to have a high optical efficiency of 94% at the pyramid exit for direct radiation, but this high efficiency rapidly decreases to 0% for diffuse radiation. In this case, the silicon solar cell comes into the scene to converts these diffused or non-concentrated rays into electricity, with an optical efficiency of 85%. It was also found that the Hybrid CPV system was able to increase the power by 21% compared to the CPV system.


2014 ◽  
Vol 496-500 ◽  
pp. 978-981
Author(s):  
Xin Ju Zhang ◽  
Zhao Min Yang ◽  
Song Lin Yang

There are three work posts in this warm extruder: upsetting station, backward extrusion station and blanking station. They work continuously. The manipulator is mainly used to passing artifacts from one station to another. The warm extrusion forming process manipulator for steel connecting sleeve typically was designed to reduce labor intensity and enhance production automation level. The machines structure and working principle were described. In the same time, some pneumatic circuits and pneumatic control circuits of the manipulator were designed, so the manipulator can have automatic voltage regulating function and run smoothly. Practices show that the strapping machine has the advantages of simple structure, high efficiency, low cost and small vibrating noise.


2006 ◽  
Vol 945 ◽  
Author(s):  
Merida Sotelo-Lerma ◽  
Omar Armando Castelo-Gonzalez ◽  
Rafael Ramirez-Bon ◽  
Francisco Javier Espinoza-Beltran

ABSTRACTIndium sulphide (In2S3) is a very promising semiconductor material for window layers in solar cell devices. It is currently being investigated for high efficiency solar cell based on Cu(In,Ga)Se2-In2S3 heterostructures. The chemical bath deposition (CBD) technique is one of the most convenient methods to obtain In2S3 films because of its simplicity, low cost and some other advantages. Amorphous and polycrystalline In2S3 films on glass substrates have been obtained by the CBD technique. Like in many others CBD processes, the deposition mechanism and kinetic growth of In2S3 films on glass substrates is not very well understood [1-6]. In this work we have chemically deposited In2S3 films for different times from 6 up to 39 hours, in order to study by atomic force microscopy (AFM) the formation of the films on glass substrates. The AFM measurements were performed in a liquid medium in which the cantilever tip and the sample are completely immersed in the liquid. A specially designed AFM cell is composed of a tip attached to a circular transparent window, the liquid level is between the upper and lower surface of the window, and a circular meniscus is established around the window, preventing the tip could be affected or destroyed by the surface tension of the liquid. By using this liquid AFM technique, we can at real-time observe the thin film forming process, and thereby clearly reveal the growing mechanism. It is an ideal and more practical tool for in situ investigation of samples which are normally found in liquid environments.


2014 ◽  
Vol 620 ◽  
pp. 83-89 ◽  
Author(s):  
You Juan Ma ◽  
Xiao Wang ◽  
Peng Hui Xu ◽  
Qiang Zhang ◽  
Hui Xia Liu ◽  
...  

Laser-driven flyer micro forming process is a promising microforming technology with the advantage of high efficiency, low cost, high flexibility. A series of experiments are conducted to investigate forming ability of aluminum foil with the thickness of 50μm. The effect of forming temperature and laser energy on forming ability characterized by forming depth, forming accuracy and surface quality is quantitatively analyzed. It is found that forming depth observed through three dimensional topography increases with the enhancement of forming temperature and laser energy. By elevating the forming temperature, the preheated workpiece suffers more homogenous deformation, presenting better forming accuracy. However, a certain degree of deterioration of surface integrity at the forming temperature of 200°C can be attributed to the earlier appearance of micro cracks caused by excessive thinning even at low laser energy. Overall, it is concluded that the optimal forming temperature is appropriately 150°C as the forming depth and forming accuracy is improved with no deterioration of the surface integrity.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Sign in / Sign up

Export Citation Format

Share Document