scholarly journals Fabrication, Corrosion, and Mechanical Properties of Magnetron Sputtered Cu–Zr–Al Metallic Glass Thin Film

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4147
Author(s):  
Xianshun Wei ◽  
Chengxi Ying ◽  
Jing Wu ◽  
Haoran Jiang ◽  
Biao Yan ◽  
...  

The appearance of thin film metallic glasses (TFMGs) is gaining increasing interest because of their unique mechanical and anticorrosion properties and potential engineering applications. In this study, Cu–Zr–Al ternary thin film metallic glasses were fabricated by using DC magnetron sputtering equipment with various target powers. The evolution of the structure was systematically investigated by grazing incidence X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. The deposition rate increases with the increasing of applied target power. The as-deposited thin films show an amorphous structure. The compositional fluctuations on the nanometer scale indicate the presence of two Cu- and Zr-rich amorphous phases. The electrochemical corrosion measurements indicated that Cu–Zr–Al thin film metallic glasses had good corrosion resistance in the sulfuric acid solution. Nanoindentation results showed that the mechanical deformation was found to be homogenous and reproducible with a high value range for the hardness and modulus.

2015 ◽  
Vol 21 (S3) ◽  
pp. 1575-1576
Author(s):  
M. Dries ◽  
S. Hettler ◽  
T. Schulze ◽  
W. Send ◽  
E. Miiller ◽  
...  

2000 ◽  
Vol 15 (2) ◽  
pp. 476-482 ◽  
Author(s):  
Hirotoshi Nagata ◽  
Yasuyuki Miyama ◽  
Naoki Mitsugi ◽  
Kaori Shima

The fabrication process of an Al thin-film optical polarizer on LiNbO3 waveguides after CF4 plasma dry etching of a previously deposited SiO2 buffer layer was investigated. The problem in this process is a precipitation of compounds containing C, O, F, and Li on the etched LiNbO3 surface and a chemical deterioration of the Al caused by a reaction with these precipitates. Most notably, the growth of amorphous phase in addition to the crystalline Al metal grains and a partial oxidization of Al were found at the interface using transmission electron microscopy and x-ray photoelectron spectroscopy.


2016 ◽  
Vol 22 (5) ◽  
pp. 955-963 ◽  
Author(s):  
Manuel Dries ◽  
Simon Hettler ◽  
Tina Schulze ◽  
Winfried Send ◽  
Erich Müller ◽  
...  

AbstractThin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5(ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.


1991 ◽  
Vol 238 ◽  
Author(s):  
Kiyoshi Ogata ◽  
Asao Nakano ◽  
Yasunori Narizuka ◽  
Takayoshi Watanabe ◽  
Tetsuya Yamazaki

ABSTRACTThe structure change of a Cr-Si-O thin film with regard to heat-treatment was investigated not only by the transmission XAFS method but by the surface sensitive XAFS method using synchrotron radiation. As a result of transmission XAFS, the Cr-Si-O thin film as sputtered has an amorphous structure like a mixture of SiO2, Cr and CrSix. After heat-treatment to 650 K, Si-Cr bonds decreased and Si-O and Cr-Cr bonds increased. CrSix is unstable in the system. The interfacial studies by the surface XAFS method showed i) at the interface with polyimide, there is a thin layer which is dominantly made of Cr2O3 and ii) at the interface with Al, Cr atoms are mainly coordinated to Cr. Analyses by the XAFS method gave consistent results with chemical analyses by x-ray photoelectron spei roscopy and observation by transmission electron microscopy.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2008 ◽  
Vol 600-603 ◽  
pp. 267-272 ◽  
Author(s):  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
Masahiro Nagano

Defect formation in 4H-SiC(0001) and (000-1) epitaxy is investigated by grazing incidence synchrotron reflection X-ray topography and transmission electron microscopy. Frank-type faults, which are terminated by four Frank partials with a 1/4[0001] type Burgers vector with the same sign on four different basal planes, are confirmed to be formed by conversion of a 1c threading edge dislocation (TSD) in the substrate as well as simultaneous generation of a 1c TSD during epitaxy. The collation between the topography appearance and the microscopic structure and the variety of Frank faults are shown. Formation of carrot defects and threading dislocation clusters are also investigated.


Sign in / Sign up

Export Citation Format

Share Document