scholarly journals Experimental Investigation and Optimal Prediction of Maximum Forming Angle and Surface Roughness of an Al/SUS Bimetal Sheet in an Incremental Forming Process Using Machine Learning

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4150
Author(s):  
Raneen Abd Ali ◽  
Wenliang Chen ◽  
M.S.H. Al-Furjan ◽  
Xia Jin ◽  
Ziyu Wang

Bimetal sheets have superior properties as they combine different materials with different characteristics. Producing bimetal parts using a single-point incremental forming process (SPIF) has increased recently with the development of industrial requirements. Such types of sheets have multiple functions that are not applicable in the case of monolithic sheets. In this study, the correlation between the operating variables, the maximum forming angle, and the surface roughness is established based on the ensemble learning using gradient boosting regression tree (GBRT). In order to obtain the dataset for the machine learning, a series of experiments with continuous variable angle pyramid shape were carried out based on D-Optimal design. This design is created based on numerical variables (i.e., tool diameter, step size, and feed rate) and categorical variable (i.e., layer arrangement). The grid search cross-validation (CV) method was used to determine the optimum GBRT parameters prior to model training. After the parameter tuning and model selection, the model with a better generalization performance is obtained. The reliability of the predictive models is confirmed by the testing samples. Furthermore, the microstructure of the aluminum/stainless steel (Al/SUS) bimetal sheet is analyzed under different levels of operating parameters and layer arrangements. The microstructure results reveal that severe cracks are attained in the case of a small tool diameter while a clear refinement is observed when a high tool diameter value with small step down is used for both Al and SUS layers.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mingshun Yang ◽  
Zimeng Yao ◽  
Yan Li ◽  
Pengyang Li ◽  
Fengkui Cui ◽  
...  

An excessive thickness-reducing ratio of the deformation zone in single point incremental forming of the metal sheet process has an important influence on the forming limit. Prediction of the deformation zone thickness is an important approach to control the thinning ratio. Taking the 1060 aluminum as the research object, the principle of thickness deformation in the single point incremental forming process was analyzed; the finite element model was established using ABAQUS. A formula with high accuracy to predict the deformation zone thickness was fitted with the simulation results, and the influences of process parameters, such as tool diameter, step down, feeding speed, sheet thickness, and forming angle, on thinning ratio were analyzed. The accuracy of the finite element simulation was verified by experiment. A method to control the thinning rate by changing the forming trajectory was proposed. The results showed that the obtained value by using the fitted formula is closer to the experimental results than that obtained by the sine theorem. The thinning rate of the deformation zone increases with the increase of tool diameter, forming angle, and sheet thickness and decreases with the increase of step down, while the feeding speed had no significant effect on the thinning ratio. The most important factor of the thinning ratio is the forming angle, and the thinning ratio can be effectively reduced by using the forming trajectory with a uniformly distributed pressing point.


2013 ◽  
Vol 554-557 ◽  
pp. 1265-1272 ◽  
Author(s):  
Riadh Bahloul ◽  
Henia Arfa ◽  
Hedi Belhadj Salah

Single point incremental forming (SPIF) is a modern method of forming sheet metal, where parts can be formed without the use of dedicated dies. The ability of SPIF to form a part is based on various forming parameters. Previous work was not accomplished with the help of design of experiments (DOE), thus reducing the number of parameters varied at any time. This paper presents a Box-Behnken experimental design, which develops the numerical plan, formalizes the forming parameters critical in SPIF and analyse data. The most critical factors affecting SPIF were found to be wall inclination angle, incremental step size, material thickness and tool size. The main effects of these parameters on the quality of the formed parts were studied in detail. Actually this work aims to “optimize the thinning rate and the maximum force by considering the tool diameter and the vertical pitch as unknown parameters for two different wall angles and thicknesses”. To this purpose, an optimization procedure based on the use of response surface methodology (RSM) and genetic algorithms (GA) have been proposed for application to find the optimum solutions. Finally, it demonstrated that the developed methods can solve high non-linear problems successfully. Associated plots are shown to be very efficient for a quick localization of the region of the search space containing the global optimum values of the SPIF parameters.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3973
Author(s):  
José M. Diabb Zavala ◽  
Oscar Martínez-Romero ◽  
Alex Elías-Zúñiga ◽  
Héctor Manuel Leija Gutiérrez ◽  
Alejandro Estrada-de la Vega ◽  
...  

This paper focuses on studying how mineral oil, sunflower, soybean, and corn lubricants influence friction and wear effects during the manufacturing of aluminum parts via the single point incremental forming (SPIF) process. To identify how friction, surface roughness, and wear change during the SPIF of aluminum parts, Stribeck curves were plotted as a function of the SPIF process parameters such as vertical step size, wall angle, and tool tip semi-spherical diameter. Furthermore, lubricant effects on the surface of the formed parts are examined by energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) images, the Alicona optical 3D measurement system, and Fourier-transform infrared spectroscopy (FTIR). Results show that during the SPIF process of the metallic specimens, soybean and corn oils attained the highest friction, along forces, roughness, and wear values. Based on the surface roughness measurements, it can be observed that soybean oil produces the worst surface roughness finish in the direction perpendicular to the tool passes (Ra =1.45 μm) considering a vertical step size of 0.25 mm with a 5 mm tool tip diameter. These findings are confirmed through plotting SPIFed Stribeck curves for the soybean and corn oils that show small hydrodynamic span regime changes for an increasing sample step-size forming process. This article elucidates the effects caused by mineral and vegetable oils on the surface of aluminum parts produced as a function of Single Point Incremental Sheet Forming process parameters.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


2017 ◽  
Vol 749 ◽  
pp. 154-160
Author(s):  
Khanh Dien Le ◽  
Tan Hung Nguyen ◽  
Ngoc Huy Tran ◽  
Thanh Son Le ◽  
Huy Bich Nguyen ◽  
...  

Single Point Incremental Forming (SPIF) is a recent technology of forming sheet in several decades. Nowadays, SPIF technology is still continued to be studied, applied and ameliorated in sheet manufacturing in industry. However one of the difficulties of the technology is the forming angle is still small (smaller than 800 according the properties of metal sheets). This paper recommends a measure of increasing the plasticity of the sheet by heating in time of forming by SPIF technology. Naturally, the plasticity of metal sheet increases by the temperature of the material in forming process with its limitation and constraint. The paper represents the effect of heating metal sheet through the empirical process of SPIF technology directed by the design of experiment (DOE). The analyses of the results of experimental process is applied to show the effect of heating to the precision of Titanium sheet. Finally, some private opinions about the heating in SPIF are also mentioned as a very tiny contribution of the research for the new technology.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1287
Author(s):  
Fernando Bautista-Monsalve ◽  
Francisco García-Sevilla ◽  
Valentín Miguel ◽  
Jesús Naranjo ◽  
María Carmen Manjabacas

Single point incremental forming (SPIF) is a cheap and flexible sheet metal forming process for rapid manufacturing of complex geometries. Additionally, it is important for engineers to measure the surface finish of work pieces to assess their quality and performance. In this paper, a predictive model based on machine learning and computer vision was developed to estimate arithmetic mean surface roughness (Ra) and maximum peak to valley height (Rz) of Ti6Al4V parts obtained by SPIF. An image database was prepared to train different classification algorithms in accordance with a supervised learning approach. A speeded up robust feature (SURF) detector was used to obtain visual vocabulary so that the classifiers are able to group the photographs into classes. The experimental results indicated that the proposed predictive method shows great potential to determine the surface quality, as classifiers based on a support vector machine with a polynomial kernel are suitable for this purpose.


Author(s):  
Tyler J. Grimm ◽  
Gowtham V. Parvathy ◽  
Laine Mears

Abstract Single point incremental forming (SPIF) is a dieless forming process which uses local deformations to form complex geometries. This is achieved through the use of a typically hemispherical tipped forming tool. Several variations of SPIF have been developed to improve the performance of this process. This includes the use of a partial die which is placed on the back-side of the material. The forming tool is then able to press the material into this partial die. Another method is to utilize a clamping fixture with a periphery that closely matches that of the desired geometry. While both of these methods improve the performance of SPIF, they also require dedicated fixturing. While these modifications still present an advantage over traditional stamping, it is desirable to avoid the use of any geometry-specific equipment. Springback is a significant issue when performing traditional SPIF. Springback can occur in two different ways: local and global. Local springback results from the elastic deformations created outside the region located directly beneath the forming tool. This causes poor accuracy as a result. Compensation methods have been developed to overcome this type of springback but are faced with certain limitations. Global springback refers to the springback experienced once the material is removed from its clamping fixture. This springback is a result of all residual stresses produced during forming. This springback is much more difficult to reduce and often requires annealing the workpiece subsequent to forming. A toolpath approach is explored herein as a method to reduce springback without the use of geometry-specific equipment. The toolpath developed begins at the edge of the clamping fixture, regardless of the geometry shape, and forms the flashing material prior to the desired geometry. By starting the toolpath along the edge of the fixture, elastic deformations are minimized. Additionally, the work hardening produced during this forming acts as a stiffener for the desired geometry, which behaves as a frame which matches the periphery of the desired geometry. This method was experimentally tested for its accuracy improvements when forming a truncated pyramid from 5052 aluminum. The angle of this stiffener, the step size of the stiffener, and the size of the desired geometry were varied. The fixture dimensions were held constant. This method was found to reduce the overall springback of the part and increase the accuracy of the resulting geometry. Furthermore, it was found that a large step size can be used to form the stiffener section of the part. By using a large step size, the time it takes to form this sacrificial region is minimized.


Author(s):  
Zachary C. Reese ◽  
Brandt J. Ruszkiewicz ◽  
Chetan P. Nikhare ◽  
John T. Roth

Incremental forming is a nontraditional forming method in which a spherical tool is used to asymmetrically deform sheet metal without the need for expensive allocated dies. Incremental forming employs a tool path similar to that used when CNC milling. Hence, when forming a part, the forming tool makes a series of passes circumferentially around the workpiece, gradually spirally stepping down in the z-axis on each sequential pass. This tool path deforms the sheet metal stock into the final, desired shape. These passes can start from the outer radius of the part and work in (Out to In, OI forming) or they can start from the center of the shape and work outward (In to Out, IO forming). As with many sheet metal operations, springback is a big concern during the incremental forming process. During the deformation process, residual stresses are created within the workpiece causing the final formed shape to springback when it is unclamped, sometimes very significantly. The more complex the geometry of the final part and the more total deformation that occurs when forming the geometry, the greater the residual stresses that are generated within the part. The residual stresses that have built up in the piece cause more significant distortion to the part when it is released from the retaining fixturing. This paper examines how the step size (in the z direction), OI vs. IO forming, and final part geometry affect the total springback in a finished piece. For all of these tests 0.5 mm thick sheets of 2024-T3 aluminum were used to form both the truncated pyramid and truncated cone shape. From this investigation it was found that smaller step sizes result in greater springback, IO is significantly less effective in forming the part (due to workpiece tearing), and final part geometry plays an important role due to the creation of residual stresses that exist in corners.


2014 ◽  
Vol 979 ◽  
pp. 359-362
Author(s):  
Nuttaphong Sornsuwit ◽  
Sunthorn Sittisakuljaroen

The single point incremental forming (SPIF) is a manufacturing process which allows small batch and asymmetric shape fabrication. The research focuses on its applications by consider surface roughness and formability. The surface roughness of specimen was resulted by the influence obtained between tool and specimen, where the lubricant played a significant role during the forming process, as well as material elongation as a mechanical property governed the formability of metal sheet. Surface roughness tester, SEM, EDS and profilometer were used for the characterizations. The results showed that low roughness value (Ra) of SUS 304 and SUS 316L obtained by applying air blowing as a lubricant, while Ti Gr2 could obtain low roughness by using MoS2. The behavior of wear was an adhesive wear which transfer to an abrasive wear. SUS 304 and SUS 316L sheet of test specimens achieved higher depth in forming by air lubricant and MoS2, and Ti Gr2 sheet revealed a better formability with MoS2. Furthermore, the highest depth was correlated with high roughness value for each material.


Sign in / Sign up

Export Citation Format

Share Document