scholarly journals Surface-Enhanced Absorption Spectroscopy for Optical Fiber Sensing

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Silje S. Fuglerud ◽  
Karolina Milenko ◽  
Astrid Aksnes ◽  
Dag R. Hjelme

Visible and near-infrared spectroscopy are widely used for sensing applications but suffer from poor signal-to-noise ratios for the detection of compounds with low concentrations. Enhancement by surface plasmon resonance is a popular technique that can be utilized to increase the signal of absorption spectroscopy due to the increased near-field created close to the plasmons. Despite interest in surface-enhanced infrared absorption spectroscopy (SEIRAS), the method is usually applied in lab setups rather than real-life sensing situations. This study aimed to achieve enhanced absorption from plasmons on a fiber-optic probe and thus move closer to applications of SEIRAS. A tapered coreless fiber coated with a 100 nm Au film supported signal enhancement at visible wavelengths. An increase in absorption was shown for two dyes spanning concentrations from 5 × 10−8 mol/L to 8 × 10−4 mol/L: Rhodamine 6G and Crystal Violet. In the presence of the Au film, the absorbance signal was 2–3 times higher than from an identically tapered uncoated fiber. The results confirm that the concept of SEIRAS can be implemented on an optical fiber probe, enabling enhanced signal detection in remote sensing applications.

2016 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Lucile Rutkowski ◽  
Alexandra C. Johansson ◽  
Damir Valiev ◽  
Amir Khodabakhsh ◽  
Arkadiusz Tkacz ◽  
...  

We report broadband detection of OH in a premixed CH4/air flat flame at atmospheric pressure using cavity-enhanced absorption spectroscopy based on an Er:fiber femtosecond laserand a Fourier transform spectrometer.By taking ratios of spectra measured at different heights above the burner we separate twenty OH transitions from the largely overlapping water background. Weretrieve from fits to the OH lines the relative variation of the OH concentration and flame temperature with height above the burner and compare them with 1-D simulations of the flamestructure. Full Text: PDF ReferencesG. Meijer, M. G. Boogaarts, R. T. Jongma, D. H. Parker and A. M. Wodtke, "Coherent cavity ring down spectroscopy", Chem. Phys. Lett. 217, 1, 112 (1994). CrossRef S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov and D. Romanini, "Cavity ring-down spectroscopy of OH radicals in low pressure flame", Appl. Phys. B 66, 3, 377 (1998). CrossRef X. Mercier, E. Therssen, J. F. Pauwels and P. Desgroux, "Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames.: A comparison with laser-induced fluorescence and direct laser absorption", Chem. Phys. Lett. 299, 1, 75 (1999). CrossRef J. Scherer, D. Voelkel and D. Rakestraw, "Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames", Appl. Phys. B 64, 6, 699 (1997). CrossRef R. Peeters, G. Berden and G. Meijer, "Near-infrared cavity enhanced absorption spectroscopy of hot water and OH in an oven and in flames", Appl. Phys. B 73, 1, 65 (2001). CrossRef T. Aizawa, "Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases", Appl. Opt. 40, 27, 4894 (2001). CrossRef B. Löhden, S. Kuznetsova, K. Sengstock, V. M. Baev, et al., "Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments", Appl. Phys. B 102, 2, 331 (2011). CrossRef A. Matynia, M. Idir, J. Molet, C. Roche, et al., "Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques", Appl. Phys. B 108, 2, 393 (2012). CrossRef R. S. Watt, T. Laurila, C. F. Kaminski and J. Hult, "Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source", Appl. Spectrosc. 63, 12, 1389 (2009). CrossRef C. Abd Alrahman, A. Khodabakhsh, F. M. Schmidt, Z. Qu and A. Foltynowicz, "Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame", Opt. Express 22, 11, 13889 (2014). CrossRef A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide", Appl. Phys. B 110, 2, 163 (2013). CrossRef Z. Qu, R. Ghorbani, D. Valiev and F. M. Schmidt, "Calibration-free scanned wavelength modulation spectroscopy ? application to H2O and temperature sensing in flames", Opt. Express 23, 12, 16492 (2015). CrossRef L. Rutkowski, A. Khodabakhsh, A. C. Johansson, D. M. Valiev, et al., "Measurement of H2O and OH in a Flame by Optical Frequency Comb Spectroscopy", CLEO: Science and Innovations SW4H.8 (2016). CrossRef L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, et al., "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013). CrossRef


2016 ◽  
Vol 71 (3) ◽  
pp. 520-532 ◽  
Author(s):  
José A. Adame-Siles ◽  
Tom Fearn ◽  
José E. Guerrero-Ginel ◽  
Ana Garrido-Varo ◽  
Francisco Maroto-Molina ◽  
...  

Control and inspection operations within the context of safety and quality assessment of bulk foods and feeds are not only of particular importance, they are also demanding challenges, given the complexity of food/feed production systems and the variability of product properties. Existing methodologies have a variety of limitations, such as high costs of implementation per sample or shortcomings in early detection of potential threats for human/animal health or quality deviations. Therefore, new proposals are required for the analysis of raw materials in situ in a more efficient and cost-effective manner. For this purpose, a pilot laboratory study was performed on a set of bulk lots of animal by-product protein meals to introduce and test an approach based on near-infrared (NIR) spectroscopy and geostatistical analysis. Spectral data, provided by a fiber optic probe connected to a Fourier transform (FT) NIR spectrometer, were used to predict moisture and crude protein content at each sampling point. Variographic analysis was carried out for spatial structure characterization, while ordinary Kriging achieved continuous maps for those parameters. The results indicated that the methodology could be a first approximation to an approach that, properly complemented with the Theory of Sampling and supported by experimental validation in real-life conditions, would enhance efficiency and the decision-making process regarding safety and adulteration issues.


The Analyst ◽  
2009 ◽  
Vol 134 (11) ◽  
pp. 2220 ◽  
Author(s):  
W. Denzer ◽  
M. L. Hamilton ◽  
G. Hancock ◽  
M. Islam ◽  
C. E. Langley ◽  
...  

Plasmonics ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Antonino Foti ◽  
Cristiano D’Andrea ◽  
Francesco Bonaccorso ◽  
Maurizio Lanza ◽  
Giuseppe Calogero ◽  
...  

2019 ◽  
Vol 10 (3) ◽  
pp. 204-214 ◽  
Author(s):  
Chahinez Dab ◽  
Reji Thomas ◽  
Andreas Ruediger

AbstractWe suggested a plasmonic platform based on a cubic pattern of gold spheres for surface enhanced Raman spectroscopy (SERS). In the case of linear polarization along the symmetry axes, the SERS enhancement per area is identical to hexagonally patterned surfaces. The validity of this model was tested using the simulation package of COMSOL Multiphysics® Modeling Software. We found an improved sensitivity in the near infrared and visible region of the electromagnetic spectrum. This method considered tolerance towards stacking faults and suggested a plasmonic platform for ultra-sensing applications. The design can be extended towards the molecular detection if the proposed plasmonic platform is used with SERS.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 124
Author(s):  
Wenguo Zhu ◽  
Songqing Yang ◽  
Huadan Zheng ◽  
Yuansong Zhan ◽  
Dongquan Li ◽  
...  

Graphene has been widely used in photodetectors; however its photoresponsivity is limited due to the intrinsic low absorption of graphene. To enhance the graphene absorption, a waveguide structure with an extended interaction length and plasmonic resonance with light field enhancement are often employed. However, the operation bandwidth is narrowed when this happens. Here, a novel graphene-based all-fiber photodetector (AFPD) was demonstrated with ultrahigh responsivity over a full near-infrared band. The AFPD benefits from the gold-enhanced absorption when an interdigitated Au electrode is fabricated onto a Graphene-PMMA film covered over a side-polished fiber (SFP). Interestingly, the AFPD shows a photoresponsivity of >1 × 104 A/W and an external quantum efficiency of >4.6 × 106% over a broadband region of 980–1620 nm. The proposed device provides a simple, low-cost, efficient, and robust way to detect optical fiber signals with intriguing capabilities in terms of distributed photodetection and on-line power monitoring, which is highly desirable for a fiber-optic communication system.


2019 ◽  
Vol 39 (9) ◽  
pp. 0930006
Author(s):  
姚丹 Dan Yao ◽  
郑凯元 Kaiyuan Zheng ◽  
刘梓迪 Zidi Liu ◽  
李俊豪 Junhao Li ◽  
郑传涛 Chuantao Zheng ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 2792 ◽  
Author(s):  
Qixin He ◽  
Minhan Lou ◽  
Chuantao Zheng ◽  
Weilin Ye ◽  
Yiding Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document