scholarly journals Two-Layer Nanocomposite TiC-Based Coatings Produced by a Combination of Pulsed Cathodic Arc Evaporation and Vacuum Electro-Spark Alloying

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 547 ◽  
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Alexander Sheveyko ◽  
Dmitry Moskovskikh ◽  
Stepan Vorotylo

A novel two-stage technology combining vacuum electro-spark alloying (VESA) and pulsed cathodic arc evaporation (PCAE) was approbated for the deposition of TiC-based coatings in inert (Ar) and reactive (C2H4) atmospheres. The deposition was carried out using a TiC-NiCr-Eu2O3 electrode and 5140 steel substrates. Structural, elemental, and phase compositions of the deposited coatings were investigated by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. The mechanical properties of the coatings were measured by nanoindentation using a 4 mN load. The tribological properties of the coatings were measured using the pin-on-disc setup in air and in distilled water at a 5 N load. The experimental data suggest that VESA coatings are characterized by surface defects, a hardness of 12.2 GPa, and a friction coefficient of 0.4. To ensure good adhesion between the VESA coating and the upper layer containing diamond-like carbon (DLC), an intermediate layer was deposited by PCAE in the Ar atmosphere. The intermediate layer had a hardness of up to 31 GPa. The upper layer of the coating ensured a low and stable friction coefficient of 0.2 and high wear resistance due to the formation of an sp2–sp3 bound carbon phase. Multilayer TiC-based coating with the upper DLC layer, in addition to high tribological properties, was characterized by the lowest corrosion current density (12 μA/cm2).

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 230 ◽  
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo

Coatings were deposited by pulsed cathodic arc evaporation (PCAE) of a TiC–NiCr–Eu2O3 cathode fabricated by the powder metallurgy method. The deposition was carried out in different gas media, including Ar, N2, and C2H4. The structure, elemental, and phase compositions of coatings were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), Raman spectroscopy, and glow discharge optical emission spectroscopy (GDOES). Coatings were tested in terms of their hardness, elastic modulus, elastic recovery, friction coefficient, and wear and corrosion resistance. The obtained results demonstrated that the coatings deposited in Ar possessed higher hardness up to 20 GPa and an elastic recovery of 92%. Coatings produced using С2H4 showed the minimum friction coefficient (0.35 ± 0.01). The use of nitrogen as a gas medium led to the formation of coatings with the best corrosion resistance in sulfuric acid. Coatings formed in N2 had a free corrosion potential of +0.28 V and a corrosion current density of 0.012 µA/cm2.


Author(s):  
K. Lukaszkowicz ◽  
A. Paradecka ◽  
W. Kwaśny ◽  
R. Potempa

Purpose: In this paper, we report the research results on the structure and mechanical and tribological properties of TiCN coating deposited by cathodic arc evaporation process on the X40CrMoV5-1 steel substrate. Design/methodology/approach: The morphology of the surface of the investigated coating was performed using a scanning electron microscope Zeiss Supra 35. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The cohesion and adhesion properties of the coating were made using the scratch test on the CSEM REVETEST device. The friction coefficient and wear rate of coating were determined in the ball-on-disc test. The whole study was complemented by X-ray crystallography. Findings: The TiCN coating demonstrated columnar structure as well as good adherence to the substrate - the critical load LC2 is 63 N. It was found that the structure of the investigated coating consisted of fine crystallites. Basing on the XRD pattern of the TiCN, the occurrence of fcc phase was observed in the coating, the texture direction <111> is perpendicular to the sample surface. In sliding dry friction conditions, the friction coefficient for the investigated element is set in the range between 0.32-0.37. The coatings demonstrated a high hardness (3000 HV). Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the TiCN coatings make them suitable in industrial applications. Originality/value: The investigation results will provide useful information to applying the TiCN coatings for the improvement of mechanical properties of the hot work tool steels.


2017 ◽  
Vol 49 ◽  
pp. 98-107 ◽  
Author(s):  
Nikolay Petkov ◽  
Totka Bakalova ◽  
Hristo Bahchedzhiev ◽  
Pavel Kejzlar ◽  
Petr Louda

This paper is a continuation of our previous work. The article presents an investigation of the influence of coating deposition parameters, in particular a variation with 50% of both cathodic arc current and bias voltage, on the mechanical and tribological properties of TiCN coatings deposited by the cathodic arc evaporation of metals at a constant gas ratio. The thicknesses of the coatings are measured by the Calotest method using a 30-mm hard steel ball. The determined values are in the range of 734 – 1534 nm. Surface morphology and chemical composition are estimated by a Scanning Electron Microscope (SEM) and an Energy Dispersive Spectrometer (EDS) of SEM. The determined values of nanohardness are in the range of 10 - 23 GPa and adhesion values are in the range of 28 - 70 N. Tribology of the TiCN coatings is investigated with three different load forces (3N, 5N and 8N) by the CETR UMI Multi-Specimen Test System from Bruker with an Si3N4 ball counter-body. The friction coefficient is measured in the range of 0.19 - 0.23. Coating wear and wear of the counter-body are calculated, according to the standard EN1071-13:2010, wherein the values of the latter are in the range of (2.5 - 30) x 10-6 mm3.


2018 ◽  
Vol 23 (2) ◽  
pp. 17-23
Author(s):  
Bogdan Warcholiński ◽  
Adam Gilewicz ◽  
Alexandr S. Kuprin ◽  
Valeriy D. Ovcharenko ◽  
Roman Jędrzejewski ◽  
...  

Oxynitrides of transitional metals are a coating material with decorative features due to the possibility of their adjustable colouring and good mechanical properties. The coatings of zirconium oxynitride have been deposited by the method of cathodic arc evaporation onto steel substrates. A set of coatings obtained at different relative volumetric concentrations of oxygen in the reaction atmosphere during deposition has been investigated. The influence of oxygen concentration on the colour, surface morphology and phase composition of the coatings has been analyzed. With the increase of oxygen content, the colour of the thin Zr-O-N coating has changed from golden-yellow to graphite. Observation of the surface of the coatings by means of the SEM method has shown the presence of surface defects in the form of macroparticles ranging from a submicron to several micrometers, with the smallest microparticle population being the largest. It has also been found that the surface roughness of the Zr-O-N coatings increases as the relative volumetric concentration of oxygen in the atmosphere during deposition increases. By means of X-ray diffraction analysis it has been shown that the zirconium oxide phase has occurred with a relative oxygen concentration of 50%, whereas below this value only the ZrN phase has been observed. The value of the parameter of the regular elementary cell of the Zr-O-N coatings increases as the relative concentration of oxygen in the atmosphere increases, while at the same time the intensity of the diffraction lines of the coatings decreases.


Sign in / Sign up

Export Citation Format

Share Document