scholarly journals Structure and Properties of Protective Coatings Deposited by Pulsed Cathodic Arc Evaporation in Ar, N2, and C2H4 Environments using the TiC–NiCr–Eu2O3 Cathode

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 230 ◽  
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo

Coatings were deposited by pulsed cathodic arc evaporation (PCAE) of a TiC–NiCr–Eu2O3 cathode fabricated by the powder metallurgy method. The deposition was carried out in different gas media, including Ar, N2, and C2H4. The structure, elemental, and phase compositions of coatings were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), Raman spectroscopy, and glow discharge optical emission spectroscopy (GDOES). Coatings were tested in terms of their hardness, elastic modulus, elastic recovery, friction coefficient, and wear and corrosion resistance. The obtained results demonstrated that the coatings deposited in Ar possessed higher hardness up to 20 GPa and an elastic recovery of 92%. Coatings produced using С2H4 showed the minimum friction coefficient (0.35 ± 0.01). The use of nitrogen as a gas medium led to the formation of coatings with the best corrosion resistance in sulfuric acid. Coatings formed in N2 had a free corrosion potential of +0.28 V and a corrosion current density of 0.012 µA/cm2.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4717
Author(s):  
Bogdan Warcholinski ◽  
Adam Gilewicz ◽  
Piotr Myslinski ◽  
Ewa Dobruchowska ◽  
Dawid Murzynski ◽  
...  

The current market requirements are related to the introduction of new protective coatings for tools and machine parts with much better performance properties. These requirements are met by the AlCrSiN coatings; however, knowledge on the adhesion of these coatings to the substrate, as well as on their corrosion resistance, is deficient. The article presents the results of technological works on the coating deposition from AlCrSi cathodes with a silicon concentration from 0 at% to 10 at% by the cathodic arc evaporation and the results of systematic studies of their structure, mechanical, tribological and electrochemical properties. A correlation between the above-mentioned properties and the silicon concentration in the AlCrSiN coatings has been found and discussed. The coatings formed from cathodes containing less than 5 at% Si crystallize in the cubic structure. The size of the crystallites decreases with the silicon concentration increase. The coatings are characterized by a high hardness with a maximum of about 37 GPa (2 at% Si). The adhesion of the coatings is almost independent of the concentration of silicon. The wear rate is about one order of magnitude higher for coatings deposited from cathodes with a silicon concentration of 5 at% and 10 at% compared to a coating with a lower silicon concentration. This finding is consistent with the results of corrosion resistance studies. The coating deposited from the cathode with 10 at% of silicon exhibits the best anticorrosion properties against the salt solution.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 547 ◽  
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Alexander Sheveyko ◽  
Dmitry Moskovskikh ◽  
Stepan Vorotylo

A novel two-stage technology combining vacuum electro-spark alloying (VESA) and pulsed cathodic arc evaporation (PCAE) was approbated for the deposition of TiC-based coatings in inert (Ar) and reactive (C2H4) atmospheres. The deposition was carried out using a TiC-NiCr-Eu2O3 electrode and 5140 steel substrates. Structural, elemental, and phase compositions of the deposited coatings were investigated by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. The mechanical properties of the coatings were measured by nanoindentation using a 4 mN load. The tribological properties of the coatings were measured using the pin-on-disc setup in air and in distilled water at a 5 N load. The experimental data suggest that VESA coatings are characterized by surface defects, a hardness of 12.2 GPa, and a friction coefficient of 0.4. To ensure good adhesion between the VESA coating and the upper layer containing diamond-like carbon (DLC), an intermediate layer was deposited by PCAE in the Ar atmosphere. The intermediate layer had a hardness of up to 31 GPa. The upper layer of the coating ensured a low and stable friction coefficient of 0.2 and high wear resistance due to the formation of an sp2–sp3 bound carbon phase. Multilayer TiC-based coating with the upper DLC layer, in addition to high tribological properties, was characterized by the lowest corrosion current density (12 μA/cm2).


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


2020 ◽  
Vol 329 ◽  
pp. 02029
Author(s):  
Anna Kameneva ◽  
Vadim Karmanov ◽  
Sergey Stepanov ◽  
Darya Kameneva

In this paper, TiN, ZrN, TixZr1-xN, Ti1-xAlxN coatings were obtained by cathodic arc evaporation at optimal technological parameters. The corrosion properties of these coatings were investigated in 5% NaOH. The coating ZrN deposited by cathodic arc evaporation slows down the corrosion in the 5% NaOH by over 3,000 times, and the passive current – by 2,000 times. The TixZr1-xN coating has the best physico-mechanical properties: microhardness Н = 36 GPa, Young’s modulus Е = 312 GPa, elastic recovery We = 78 %, resistance to elastic failure strain H/E = 0.12, and resistance to plastic strain H3/E2 = 1.31 GPa. The Ti1-xAlxN coating has the best wear properties: friction coefficient 0.09, counterbody wear intensity by volume 0.43•10-8 mm3/Nm, coating wear intensity by volume 0.05•10-4 mm3/Nm and by mass•0.03•10-5 mg/Nm. Multilayer coating TiN-TixZr1-xN-Ti1-xAlxN-ZrN (ZrN-top layer) has a complex of high physico-mechanical and wear properties in 5% NaOH.


2021 ◽  
pp. 119-128
Author(s):  
R.L. Vasilenko ◽  
V.N. Voyevodin ◽  
V.А. Belous ◽  
М.A. Bortnitskaya ◽  
І.V. Kolodiy ◽  
...  

Protective coatings with different compositions of Fe, Cr, and Al were deposited by cathodic arc evaporation method on fragments of Zr1Nb alloy fuel claddings. The influence of the composition and structural state of the developed coatings on their physical and mechanical properties (microhardness, resistance to corrosion and cavitation and abrasive wear) has been studied. It is shown that the optimal combination of mechanical properties and high resistance to oxidation from a series of studied coatings FeCr, FeCrAl, and CrAl have coatings of the FeCrAl system with a concentration of Cr ~ 22 at.% and Al ~ 14.3 at.%. It was found that protective coatings such as FeCr, FeCrAl, and CrAl with a thickness of ~ 12 μm significantly increase the resistance to oxidation and prevent the destruction of fuel claddings under oxidation in air at a temperature of 1150 °C for 1 h.


2006 ◽  
Vol 118 ◽  
pp. 257-264 ◽  
Author(s):  
Cheng Hsun Hsu ◽  
Jung Kai Lu ◽  
Ming Li Chen

In this study, austempered ductile iron (ADI) substrate containing acicular ferrite and high-carbon austenite in the microstructure is made by austempering treatment at 360. Cathodic arc evaporation (CAE) coating technique was used to coat DLC, TiN and TiAlN films on ADI for surface modification. The results showed that the three coatings could be successfully coated onto ADI through CAE process without altering the unique microstructure of ADI. The structures of the coatings were identified by XRD, Raman and TEM, respectively. After HRC indentation testing, it was found that nodular graphite was the initial site of cracking for the coatings and then peeled. Surface roughness of all coated specimens was increased because the droplets generated on the substrate surface during the CAE process. Coated ADI had better wearability performance than uncoated ADI due to higher surface hardness. Coated specimens exhibited higher corrosion resistance than uncoated ones when they were immersed in separate solutions of both 3.5 wt. % NaCl and 10 vol. % HCl. In particular, TiAlN had the best corrosion resistance among the coated specimens.


Sign in / Sign up

Export Citation Format

Share Document