scholarly journals Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 761 ◽  
Author(s):  
Matthew Hunt ◽  
Mike Taverne ◽  
Joseph Askey ◽  
Andrew May ◽  
Arjen Van Den Berg ◽  
...  

Three-dimensional nanostructured magnetic materials have recently been the topic of intense interest since they provide access to a host of new physical phenomena. Examples include new spin textures that exhibit topological protection, magnetochiral effects and novel ultrafast magnetic phenomena such as the spin-Cherenkov effect. Two-photon lithography is a powerful methodology that is capable of realising 3D polymer nanostructures on the scale of 100 nm. Combining this with postprocessing and deposition methodologies allows 3D magnetic nanostructures of arbitrary geometry to be produced. In this article, the physics of two-photon lithography is first detailed, before reviewing the studies to date that have exploited this fabrication route. The article then moves on to consider how non-linear optical techniques and post-processing solutions can be used to realise structures with a feature size below 100 nm, before comparing two-photon lithography with other direct write methodologies and providing a discussion on future developments.

1997 ◽  
Vol 3 (S2) ◽  
pp. 305-306
Author(s):  
David W. Piston

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. It provides three-dimensional resolution and eliminates background equivalent to an ideal confocal microscope without requiring a confocal spatial filter, whose absence enhances fluorescence collection efficiency. This results in inherent submicron optical sectioning by excitation alone. In practice, TPEM is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 limits the average input power to less than 10 mW, only slightly greater than the power normally used in confocal microscopy. Because of the intensity-squared dependence of the two-photon absorption, the excitation is limited to the focal volume.


2006 ◽  
Vol 532-533 ◽  
pp. 568-571
Author(s):  
Ming Zhou ◽  
Hai Feng Yang ◽  
Li Peng Liu ◽  
Lan Cai

The photo-polymerization induced by Two-Photon Absorption (TPA) is tightly confined in the focus because the efficiency of TPA is proportional to the square of intensity. Three-dimensional (3D) micro-fabrication can be achieved by controlling the movement of the focus. Based on this theory, a system for 3D-micro-fabrication with femtosecond laser is proposed. The system consists of a laser system, a microscope system, a real-time detection system and a 3D-movement system, etc. The precision of micro-machining reaches a level down to 700nm linewidth. The line width was inversely proportional to the fabrication speed, but proportional to laser power and NA. The experiment results were simulated, beam waist of 0.413μm and TPA cross section of 2×10-54cm4s was obtained. While we tried to optimize parameters, we also did some research about its applications. With TPA photo-polymerization by means of our experimental system, 3D photonic crystal of wood-pile structure twelve layers and photonic crystal fiber are manufactured. These results proved that the micro-fabrication system of TPA can not only obtain the resolution down to sub-micron level, but also realize real 3D micro-fabrication.


2020 ◽  
Vol 1003 ◽  
pp. 165-172 ◽  
Author(s):  
Ritu Walia ◽  
Kamal Nain Chopra

This paper presents an Exhaustive Analysis of the Characterization of Photopolymer Material (SZ2080) by Two-Photon Polymerization, and some of the modern concepts like Characterization of Photonic Crystals in Photopolymer SZ2080 by Two-Photon Polymerization, Waves Moving in a Periodic Potential, and Optical Quantum metamaterials. Two-photon polymerization for fabricating three-dimensional subdiffraction-limited structures has been discussed. Experimental and Computed Curves of line thickness (nm) vs feed rate (μm/s) have been technically analyzed. Waves moving in a Periodic Potential and Photonic Crystals have been technically discussed. In addition, Optical Quantum metamaterials have been discussed in terms of quantum coherence, and quantum dots with emphasis on cavity array metamaterial.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3774 ◽  
Author(s):  
Amalio Fernández-Pacheco ◽  
Luka Skoric ◽  
José María De Teresa ◽  
Javier Pablo-Navarro ◽  
Michael Huth ◽  
...  

Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.


2012 ◽  
Vol 476-478 ◽  
pp. 1245-1248 ◽  
Author(s):  
Fu Quan Guo ◽  
Ji Hu ◽  
Bin Guo ◽  
Hao Liang

A novel multibranched nonlinear dye,4, 4´, 4´´-tris(9-carbazyl-trans-styryl) triphenylamine (TCSTPA),has been designed and synthesized aimed at two-photon absorption applications. Two-photon absorption cross section of the multibranched dye was obtained as high as 2.35×10-47cm4s photon-1molecule-1pumped with femtosecond laser beam at 800 nm. One-photon and two-photon absorption optical properties were demonstrated in solutions. Three-dimensional (3D) optical data storage experiments were carried out by two-photon photobleaching in the multibranched-dye doped polymethylmethacryate (PMMA) with a 3D data storage density of approximate 14 Gbits/cm3. Research on the two-photon photobleaching ability shows the novel two-photon absorption dye with multibranched molecular motif has higher photosensitivity than traditional linear two-photon absorption dyes do.


1994 ◽  
Author(s):  
Ram Piyaket ◽  
Ilkan Cokgor ◽  
Sadik C. Esener ◽  
Chad S. Solomon ◽  
Susan Hunter ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jin Woo Lee

Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D) tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA) and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document