scholarly journals Analysis of the Machining Process of Titanium Ti6Al-4V Parts Manufactured by Wire Arc Additive Manufacturing (WAAM)

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 766 ◽  
Author(s):  
Fernando Veiga ◽  
Alain Gil Del Val ◽  
Alfredo Suárez ◽  
Unai Alonso

In the current days, the new range of machine tools allows the production of titanium alloy parts for the aeronautical sector through additive technologies. The quality of the materials produced is being studied extensively by the research community. This new manufacturing paradigm also opens important challenges such as the definition and analysis of the optimal strategies for finishing-oriented machining in this type of part. Researchers in both materials and manufacturing processes are making numerous advances in this field. This article discusses the analysis of the production and subsequent machining in the quality of TI6Al4V produced by Wire Arc Additive Manufacturing (WAAM), more specifically Plasma Arc Welding (PAW). The promising results observed make it a viable alternative to traditional manufacturing methods.

The Cutting process used in milling is one of the most common type of industrial machining methods. Similar to traditional milling spindles, the motor driven spindles are fitted with an integrated motor, thereby eliminating belts and gears for the transmission of power from the motor to the cutting tools. The innovative machine tools should be highly characterized systems in order to retain the necessary precision, efficiency and reliability. To satisfy their end user's reliability and availability requirements, both the spindle system (Tool/Tool-Holder/ Spindle) and motor tool system need to be configured for their usability and output results. However, the quality of a control device in industrial practice is greatly affected by the spindle cutting output and its reliability. The motor spindles are nothing but the rotating drive shafts which acts as axes for cutting force tools or in machining process for holding cutting instrument. Hence the spindles are one of the important factor in machining tool process and productivity, as these are used to produce parts as well as machines that produce components, which in turn have a significant impact on production levels and quality of products.


2018 ◽  
Vol 190 ◽  
pp. 02005 ◽  
Author(s):  
Markus Hirtler ◽  
Angelika Jedynak ◽  
Benjamin Sydow ◽  
Alexander Sviridov ◽  
Markus Bambach

Within the scope of consumer-oriented production, individuality and cost-effectiveness are two essential aspects, which can barely be met by traditional manufacturing technologies. Conventional metal forming techniques are suitable for large batch sizes. If variants or individualized components have to be formed, the unit costs rise due to the inevitable tooling costs. For such applications, additive manufacturing (AM) processes, which do not require tooling, are more suitable. Due to the low production rates and limited build space of AM machines, the manufacturing costs are highly dependent on part size and batch size. Hence, a combination of both manufacturing technologies i.e. conventional metal forming and additive manufacturing seems expedient for a number of applications. The current study develops a process chain combining forming and additive manufacturing. First, a semi-finished product is formed with forming tools of reduced complexity and then finished by additive manufacturing. This research investigates the addition of features using AlSi12 created by Wire Arc Additive Manufacturing (WAAM) on formed EN-AW 6082 preforms. By forming, the strength of the material was increased, while this effect was partly reduced by the heat input of the WAAM process.


Author(s):  
Bruno Zambrano Degan ◽  
Gustavo Franco Barbosa ◽  
David Guerra-Zubiaga ◽  
Navid Nasajpour-Esfahani ◽  
Abdullah Al Mamun

Abstract With advances in automation, industry seeks for optimization while new products are developed and manufacturing processes are becoming smarter. In this sense, virtual manufacturing validations have been demanded for reducing the cost with physical prototypes, ensuring ergonomically safe processes and increasing the quality of processes by emulating it realistically, levering automation utilization in industry environments with a faster and safer manner. By that, this research proposes the use of Tecnomatix Siemens® PLM software for process simulation of 7050 aluminum drilling, material which is widely used in aerospace industry, allowing the evaluation of complexes scenarios with multi-robot integration and its conditions and variables, in order to improve the machining process and its aeronautical structural assemblies. Thus, this research provided a relevant contribution regarding the analysis of main process parameters to obtain an efficient sequence of drilling, its productivity and ergonomic conditions.


2021 ◽  
Author(s):  
WARUNA SENEVIRATNE, ◽  
JOHN TOMBLIN ◽  
BRANDON SAATHOFF

Additive manufacturing has been adopted in many aerospace and defense applications to reduce weight and buy-to-fly ratios of low-volume high- complexity parts. Polymer-based additive manufacturing processes such as Fused Deposition Modeling (FDM) has enabled aerospace manufactures to improve the structural efficiency of parts through generative design or topology optimization. This level of design freedom did not exist in the past due to limitations associated with traditional manufacturing processes such as subtractive machining. Improvements in the material and the maturation of the FDM process has led to the production of many non-structural flightworthy parts used in aircraft today. Polymer-based additive manufacturing can be further leveraged in aerospace applications with the addition of electroplated coatings that act as reinforcement. While many of the commonly known electroplated coating applications involve enhancing the part appearance, electroplated coatings can also improve the strength, stiffness, and durability of plastic parts. Depending on the use case, the thickness of the metallic plating material (combination of copper and nickel) can be tailored to achieve the desired composite properties (metal and polymer). In this research, the tensile and flexural mechanical properties were assessed for Ultem™ 9085 FDM printed specimens and compared to specimens with metallic coating thicknesses of approximately 75-μm, 150-μm, and 300-μm. Non- destructive inspections using x-ray computed tomography were performed prior to mechanical testing to assess the electroplated coating thickness variation and overall quality.


2019 ◽  
Vol 269 ◽  
pp. 05001 ◽  
Author(s):  
Karan Derekar ◽  
Jonathan Lawrence ◽  
Geoff Melton ◽  
Adrian Addison ◽  
Xiang Zhang ◽  
...  

Wire arc additive manufacturing (WAAM) technique has revealed the potential of replacing existing aerospace industry parts manufactured by traditional manufacturing routes. The reduced mechanical properties compared to wrought products, the porosity formation, and solidification cracking are the prime constraints that are restricting wide-spread applications of WAAM products using aluminium alloys. An interpass temperature is less studied in robotic WAAM and is the vital aspect affecting the properties of a formed product. This paper highlights the effects of change in interpass temperature on porosity content and mechanical properties of WAAM parts prepared using DC pulsed GMAW process, with 5356 aluminium consumable wire. The samples prepared with different interpass temperatures were studied for the distribution of pores with the help of computed tomography radiography (CT radiography) technique. A WAAM sample produced with higher interpass temperature revealed 10.41% less porosity than the sample prepared with lower interpass temperature. The pores with size less than 0.15mm3 were contributing over 95% of the overall porosity content. Additionally, on a volumetric scale, small pores (<0.15mm3) in the higher interpass temperature sample contributed 81.47% of overall volume of pores whereas only 67.92% volume was occupied in lower interpass temperature sample with same sized pores. The different solidification rates believed to have influence on the hydrogen evolution mechanism. Tensile properties of higher interpass temperature sample were comparatively better than lower interpass temperature sample. For the deposition pattern used in this study, horizontal specimens were superior to vertical specimens in tensile properties.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 771 ◽  
Author(s):  
Teresa Artaza ◽  
Trunal Bhujangrao ◽  
Alfredo Suárez ◽  
Fernando Veiga ◽  
Aitzol Lamikiz

Nickel-based alloys have had extensive immersion in the manufacturing world in recent decades, especially in high added value sectors such as the aeronautical sector. Inconel 718 is the most widespread in terms of implantation. Therefore, the interest in adapting the manufacture of this material to additive manufacturing technologies is a significant objective within the scientific community. Among these technologies for the manufacture of parts by material deposition, plasma arc welding (PAW) has advantages derived from its simplicity for automation and integration on the work floor with high deposition ratios. These characteristics make it very economically appetizing. However, given the tendency of this material to form precipitates in its microstructure, its manufacturing by additive methods is very challenging. In this article, three deposition conditions are analyzed in which the energy and deposition ratio used are varied, and two cooling strategies are studied. The interpass cooling strategy (ICS) in which a fixed time is expected between passes and controlled overlay strategy (COS) in which the temperature at which the next welding pass starts is controlled. This COS strategy turns out to be advantageous from the point of view of the manufacturing time, but the deposition conditions must be correctly defined to avoid the formation of Laves phases and hot cracking in the final workpiece.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2671 ◽  
Author(s):  
Maximilian Gierth ◽  
Philipp Henckell ◽  
Yarop Ali ◽  
Jonas Scholl ◽  
Jean Pierre Bergmann

Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantly.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Kory Chang ◽  
Masakazu Soshi

Sliding guideways are often used as the foundation for linear motion in computer numerical control (CNC) machine tools due to their high damping capabilities especially for heavy duty machining applications. However, the traditional manufacturing process with grinding is time-consuming, and the product’s sliding performance has not been optimized nor clearly understood. In order to increase productivity, a machining center based manufacturing method with cubic boron nitride (CBN) milling tools was introduced and tested by researchers. While greatly reducing manufacturing time and cost, a rougher milled surface, in comparison to traditional grinding, is a possible concern for the performance as well as the life of sliding guideways. In this study, a novel planar honing process was proposed as a postprocess of CBN milling to create a finish surface on hardened cast iron sliding guideways used for CNC machine tools. A design of experiment (DOE) was conducted to statistically understand significant factors in the machining process and their relationship with surface topography. Effective planar honing conditions were discovered and analyzed with three-dimensional (3D) and two-dimensional surface parameters.


2019 ◽  
Vol 13 (3) ◽  
pp. 346-353 ◽  
Author(s):  
Johnnieew Zhong Li ◽  
Mohd Rizal Alkahari ◽  
Nor Ana Binti Rosli ◽  
Rafidah Hasan ◽  
Mohd Nizam Sudin ◽  
...  

Wire arc additive manufacturing (WAAM) is a crucial technique in the fabrication of 3D metallic structures. It is increasingly being used worldwide to reduce costs and time. Generally, AM technology is used to overcome the limitations of traditional subtractive manufacturing (SM) for fabricating large-scale components with lower buy-to-fly ratios. There are three heat sources commonly used in WAAM: metal inert gas welding (MIG), tungsten inert gas welding (TIG), and plasma arc welding (PAW). MIG is easier and more convenient than TIG and PAW because it uses a continuous wire spool with the welding torch. Unlike MIG, tungsten inert gas welding (TIG) and plasma arc welding (PAW) need an external wire feed machine to supply the additive materials. WAAM is gaining popularity in the fabrication of 3D metal components, but the process is hard to control due to its inherent residual stress and distortion, which are generated by the high thermal input from its heat sources. Distortion and residual stress are always a challenge for WAAM because they can affect the component’s geometric accuracy and drastically degrade the mechanical properties of the components. In this paper, wire-based and wire arc technology processes for 3D metal printing, including their advantages and limitations are reviewed. The optimization parametric study and modification of WAAM to reduce both residual stress and distortion are tabulated, summarized, and discussed.


Sign in / Sign up

Export Citation Format

Share Document