scholarly journals Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1573
Author(s):  
Melanie Namour ◽  
Tim Verspecht ◽  
Marwan El Mobadder ◽  
Wim Teughels ◽  
Andre Peremans ◽  
...  

(1) Background: The relatively high prevalence of peri-implantitis (PI) and the lack of a standard method for decontamination of the dental implant surface have pushed us to conduct further research in the field. Bacterial biofilms were found to play a primordial role in the etiology of PI. Therefore, the aim is to evaluate the efficacy of a laser-assisted elimination of biofilm protocol in the removal of a multi-species biofilm on titanium surfaces. (2) Methods: In total, 52 titanium discs (grade 4) were used. The study group consisted of 13 titanium disks contaminated with multi-species biofilms and subsequently irradiated with the laser (T + BF + L). The control groups consisted of the following types of titanium disks: 13 contaminated with multi-species biofilms (T + BF), 13 sterile and irradiated (T + L), 13 sterile and untreated (T). Q-Switch Nd:YAG laser Irradiation parameters were the following: energy density equal to 0.597 J/cm2 per pulse, power equal to 270 milliwatt per pulse, 2.4 mm of spot diameter, and 10 Hz repetition rate for pulse duration of six nanoseconds (ns). The laser irradiation was made during 2 s of total time in non-contact and at 0.5 mm away from the titanium disc surface. After treatment, presence of biofilms on the disks was evaluated by staining with crystal violet (CV), which was measured as optical density at six hundred thirty nm, and statistical analyses were done. (3) Results: the optical density values were 0.004 ± 0.004 for the study group T + BF + L, 0.120 ± 0.039 for group T + BF, 0.006 ± 0.003 for group T + L, and 0.007 ± 0.007 for group T. For the study group, laser treatment resulted in a total elimination of the biofilm, with mean values statistically significantly lower than those of contaminated titanium surfaces and similar to those of sterile titanium surfaces. (4) Conclusions: Our irradiation protocol provided a significant elimination of the multi-species biofilm on titanium surfaces. Laser treated titanium surfaces were biofilm-free, similar to the sterile ones.

1991 ◽  
Author(s):  
Hans-Joachim Schwarzmaier ◽  
Matthias P. Heintzen ◽  
Mathias Zumdick ◽  
Raimund Kaufmann ◽  
Myron L. Wolbarsht

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Carlos Nelson Elias ◽  
Patricia Abdo Gravina ◽  
Costa e Silva Filho ◽  
Pedro Augusto de Paula Nascente

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength.Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed.Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells.Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of thein vitrocytocompatibility of the surfaces.Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.


2015 ◽  
Vol 40 (3) ◽  
pp. E122-E131 ◽  
Author(s):  
DC Barcellos ◽  
GR Batista ◽  
CR Pucci ◽  
ES Persici ◽  
AB Borges ◽  
...  

SUMMARY Objectives This study evaluated the durability of bond strength to enamel using total-etch (Single Bond/SB) and self-etch (Clearfil SE Bond/CSEB) adhesives associated with neodymium:yttrium-aluminu- garnet (Nd:YAG) laser irradiation through the uncured adhesives. Methods Bovine incisors were worn to expose an area of enamel and were divided into four groups: group 1 (control) SB + polymerization; group 2 (control) CSEB + polymerization; group 3 (laser) − SB + Nd:YAG laser (174.16 J/cm2) + polymerization; and group 4 (laser) CSEB + Nd:YAG (174.16 J/cm2) + polymerization. Blocks of composite were fabricated and stored for 24 hours or 12 months, sectioned into beams, and submitted to microtensile tests. Results were analyzed by three-way analysis of variance (ANOVA) (adhesive, technique, and storage time) and Tukey tests. Results ANOVA revealed significant differences for adhesive × technique and technique × storage time (p<0.05). The mean values (MPa) for interaction adhesive × technique (standard deviation) were as follows: SB/control = 35.78 (6.04)a; SB/laser = 26.40 (7.25)b, CSEB/control = 26.32 (5.71)b, CSEB/laser = 23.90 (7.49)b. For interaction technique × storage time the mean values were as follows: control/24 hours = 32.58 (6.49)a; control/12 months = 29.52 (8.38)a; laser/24 hours = 29.37 (5.71)a; laser/12 months = 20.92 (6.5)b. Groups with the same letters showed no statistically significant differences. Conclusion Scanning electron microscope analysis showed evident areas of micromorphological alterations in lased samples after 12 months of water storage. Nd:YAG laser irradiation of enamel through unpolymerized total-etch adhesive significantly reduced bond strength compared with the control. Bond strength decreased when enamel samples irradiated with Nd:YAG laser through unpolymerized adhesives were stored in water for 12 months.


Diabetes ◽  
1990 ◽  
Vol 39 (3) ◽  
pp. 390-396 ◽  
Author(s):  
G. K. Dowse ◽  
H. Gareeboo ◽  
P. Z. Zimmet ◽  
K. G. Alberti ◽  
J. Tuomilehto ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


2001 ◽  
Vol 19 (6) ◽  
pp. 315-318 ◽  
Author(s):  
Keiko Yokoyama ◽  
Yuichi Kimura ◽  
Koukichi Matsumoto ◽  
Akihiro Fujishima ◽  
Takashi Miyazaki

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


2006 ◽  
Vol 31 (5) ◽  
pp. 604-609 ◽  
Author(s):  
M. Franke ◽  
A. W. Taylor ◽  
A. Lago ◽  
M. C. Fredel

Clinical Relevance Statistical analysis of the results obtained in this study shows that Nd:YAG laser irradiation on the adhesive system has a significant influence on bond strength to dentin. Bond strength is improved by better adhesive penetration when low energy is applied; whereas, high energy densities have a deleterious effect on the procedure.


Sign in / Sign up

Export Citation Format

Share Document