scholarly journals A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2625 ◽  
Author(s):  
Miguel Barreto Santos ◽  
Jorge De Brito ◽  
António Santos Silva

Alkali-silica reaction (ASR) is one of the major degradation causes of concrete. This highly deleterious reaction has aroused the attention of researchers, in order to develop methodologies for its prevention and mitigation, but despite the efforts made, there is still no efficient cure to control its expansive consequences. The incorporation of recycled aggregates in concrete raises several ASR issues, mainly due to the difficult control of the source concrete reactivity level and the lack of knowledge on ASR’s evolution in new recycled aggregate concrete. This paper reviews several research works on ASR in concrete with recycled aggregates, and the main findings are presented in order to contribute to the knowledge and discussion of ASR in recycled aggregate concrete. It has been observed that age, exposure conditions, crushing and the heterogeneity source can influence the alkalis and reactive silica contents in the recycled aggregates. The use of low contents of highly reactive recycled aggregates as a replacement for natural aggregates can be done without an increase in expansion of concrete. ASR expansion tests and ASR mitigation measures need to be further researched to incorporate a higher content of recycled aggregates.

Author(s):  
Muhammad Rizwan Riaz ◽  
Rashid Hameed ◽  
Usman Akmal ◽  
Asad Ali Gillani ◽  
Muhammad Ilyas

The energy dissipation capacity of concrete is an important aspect for a Reinforced Concrete (RC) structure to be seismically resistant. Various types of concrete incorporating sustainable materials are being developed these days such as recycled aggregate concrete. Determination of energy dissipation capacity of such new types of concrete is of great importance for their application in RC structures which are to be constructed in seismically active areas. In this regard, the experimental study presented in this contribution investigated the energy dissipation capacity of RC beams constructed using recycled aggregate concrete and subjected to three different deflection amplitude levels of reverse cyclic flexural loading. For this purpose, a total of 20 RC beams of cross section 75 x 150 mm and length of 1350 mm were cast using five different concrete compositions and tested. Among five different concrete compositions, one was control concrete containing 100% natural aggregates while the remaining four compositions were of recycled aggregate concrete containing natural and recycled aggregates. Four replacement levels (25%, 50%, 75%, and 100%) of natural aggregates with recycled aggregates were examined. Results indicated that the amplitude level of imposed deflection is an important factor which influenced the value of energy dissipated by RC beams. Further, results showed that RC beam constructed using recycled aggregate concrete containing 25% recycled aggregates exhibited energy dissipation capacity similar to or even better than that of control RC beam containing 100% natural aggregates.


Recycled aggregates (RCA) are the aggregates which are made up of crushed, inorganic particles that are obtained from the construction demolition debris. Now a day’s protection of environment is the ultimate challenge to the society. So the usage of RCA’s is the best alternative for the aggregates which are obtained naturally in the construction activity. The scope of using these recycled concrete aggregates is increasing day by day. It reduces the cost effectively as we are using waste concrete as recycled aggregates. The main focus of this paper is to use find the strength qualities of recycled aggregates so as to use it as an alternative for the natural aggregates in high strength concrete for various construction activities. Comparison of workability, compressive strength, tensile strength, elastic modulus and flexural strength of recycled aggregate concrete is made with natural aggregate concrete. Here M25 grade concrete is taken and the natural aggregates were replaced with recycled aggregates in various percentages of 0%, 25%, 50%, 75% and 100%. The mix design for these replacement ratios are done by using code of IS 10262-2009. In order to determine the properties which were mentioned above a total of 60 cubes, 10 beams and 40 cylinders were casted. The compressive strength and tensile strength of RCA concrete have been determined for 7 days and 28 days where as the modulus of elasticity and the flexural strength of RCA concrete are determined after curing for the period of 28 days. The tests done on RCA concrete are compared with concrete which is obtained by natural aggregates As per IS codification the parameters which were determined are reducing moderately as the amount of aggregates which are recycled is being raised


2019 ◽  
Vol 303 ◽  
pp. 05004
Author(s):  
Khaoula NAOUAOUI ◽  
Azzeddine BOUYAHYAOUI ◽  
Toufik CHERRADI

The field of construction is evolving rapidly over the last decade. This is justified by the evolution of human activity in various fields mainly tourism, industry … and the aging of several buildings which implies a renovation or a demolition/re-construction. These construction activities involve a large need for aggregates for new construction and a large tonnage of waste from demolitions. In order to remedy this, various stakeholders in the field (suppliers, cement works, research centers, etc.) have valued recycled aggregate concrete (RAC). Recycled aggregates concrete is considered a new type of concrete based on the use of aggregates retrieved from the demolished structures instead of natural aggregates. This replacement affects, for sure, the characteristics of the concrete produced specially the mechanical properties. Developed countries have made a great progress in normalizing the use of recycled aggregates (RA) in concrete implementation as a result of many studies done since 80’s. In Morocco, recycled aggregates do not have any specific standards, and is used mainly in roads and pavements construction. Even if it’s not normalized this use is not recent, in 1999 during the rehabilitation of the expressway road of Casablanca which was severely damaged on both channels, the authorities have opted for the reuse of aggregates instead of reloading the existing pavement with a new one. The study is based on the use of recycled concrete crushed from an old building in Rabat- Morocco as aggregates and compared it with naturel aggregates from Morocco to determinate the effect of this replacement on several characteristics of concrete. This article is aiming to investigate experimentally the effect of RA in concrete using different replacement levels, different types of adjuvant and different percentages of it. The results show that over 30% of replacement, the compressive strength decreases considerably for basic concrete. In order to increase the compressive strength for the RAC with a percentage of replacement over 50%, we used different types of additives (Plasticizer, superplasticizer and new generation superplasticizer) and different percentage of it (0.5%, 1% and 1.5%): We concludes that, for our case, the add of plasticizer gives the best result and that the 1% replacement is the optimum percentage. The tests done on RCA made by plasticizer with different replacement level confirm the results without plasticizer: Compressive strength decreases when the replacement percentage increases.


2021 ◽  
Vol 11 (23) ◽  
pp. 11274
Author(s):  
Haneol Jang ◽  
Jeonghyun Kim ◽  
Alena Sicakova

In this paper, the effect of the original aggregate size of the recycled aggregate on the mechanical properties of the recycled aggregate concrete was evaluated. A series of concretes were produced in which natural aggregates, recycled aggregates, and original aggregates in recycled aggregates were matched for a single particle size distribution curve. The replacement levels of recycled aggregate were 25% and 50%, and equivalent mortar volume mix design was applied for recycled aggregate concrete. The results show that the mechanical strength of recycled aggregate concrete increases with increasing original aggregate size. This effect was observed to be greater in concrete using recycled aggregate with a high residual mortar content.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 370 ◽  
Author(s):  
P Saravanakumar

This paper aims to study the engineering and durability properties of fly ash-based geopolymer recycled aggregate concrete and the results were presented in this paper. The addition of recycled coarse aggregate (RCA) retrieved from construction and demolition(C&D) wastes showed promising function in construction industry as an alternative to natural aggregates. It conserves enormous quantities of natural resources and reduces the space required for the landfill disposal of C&D wastes. In this study an increment of 25% partial replacements by weight of natural aggregates with recycled aggregates in geopolymer concrete up to 100% replacements were studied. The concrete containing virgin aggregate and ordinary Portland cement was consider as control concrete and the results of geopolymer recycled aggregate concrete (GP-RAC)  were compared with this. The fresh and mechanical properties of all the above four concrete mixes has been investigated. Results indicated that workability of geopolymer concrete decreases than control concrete and it took more than 24 hours to set. Geo polymer based recycled aggregate concrete exhibits better strength and durability performance than ordinary recycled aggregate concrete.  


Author(s):  
Khaoula Naouaoui ◽  
Azzeddine Bouyahyaoui ◽  
Toufik Cherradi

Recycled aggregate concrete is considered the next generation in the field of construction: it respects the environment, solves the problem of debris management and is economically profitable. In order to better adapt its use, technical studies, experimental studies and simulations are carried out in all research centers around the world in order to define its field of application. Our study falls within this framework. It is concerned with the study of the mechanical characteristics of recycled aggregate concrete essentially the compression test for various percentages of replacement. The purpose of this study is to confirm the results of studies by other researchers and to find techniques that will maximize the replacement of natural aggregates with recycled aggregates. The concrete chosen for these tests is an old building in the region of Rabat, Morocco which has been built more than 40 years and demolished in the year of 2017. The tests carried out showed a decrease in the compressive resistance noted when the replacement rates exceed 50% rate. The first improvement methods were put in place and being tested: the partial replacement of cement with pozzolan (20% rate) known by his improving of the compressive strength for ordinary concrete, the partial replacement of the large proportion [12.5-31.5] only in recycled concrete and work with natural gravels. Other improvements will be proposed as the studies progress.


2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2019 ◽  
Vol 26 (3) ◽  
pp. 37-42
Author(s):  
Ashtar S. Al-Luhybi

In the building process, the recycling of aggregates arising from building and demolition debris is one of the best alternatives to maintain the environment and the areas needed to bury these debris. It also helps to preserve natural concrete sources from depletion efficiently. The use of recycled aggregates in new concrete manufacturing, however, leads to a decrease in concrete\\\’s strength characteristics. This reduction rises with the rise in the percentage of recycled aggregates used in concrete, which has caused many researchers to undertake many researches on how to enhance the characteristics of recycled aggregate-containing concrete. This paper presents several studies that examined the effect of adding steel fiber to improve the properties of concrete containing a coarse recycled aggregate.


2017 ◽  
Vol 44 (3) ◽  
pp. 212-222
Author(s):  
Shakeel Ahmad Waseem ◽  
Bhupinder Singh

Shear strength of interfaces in natural aggregate concrete and in recycled aggregate concrete has been investigated using initially uncracked push-off specimens by varying the following parameters: replacement level of the recycled aggregates (0%, 50%, and 100%), concrete grade (normal-strength and medium-strength), and clamping force on the shear plane. Development of truss action for resisting interface shear was indicated by the observed crack patterns in the tested specimens and a truss-based analysis recommended in the literature in combination with a simplified failure envelope for concrete subjected to biaxial stresses has been used for shear strength predictions of the tested specimens. The proposed methodology, which is considered to be more rational than the empirical shear strength models available in the literature was calibrated for both the concrete types and gave conservative and reasonably accurate shear strength predictions for selected experiments taken from the literature.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


Sign in / Sign up

Export Citation Format

Share Document