scholarly journals Mechanical Properties of Glass Ionomer Cements after Incorporation of Marine Derived Hydroxyapatite

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3542
Author(s):  
Maja Bilić-Prcić ◽  
Valentina Brzović Rajić ◽  
Ana Ivanišević ◽  
Ana Pilipović ◽  
Sevil Gurgan ◽  
...  

The purpose of this study was to evaluate the effects of the incorporation of hydroxyapatite (HA) derived from cuttlefish bone on the mechanical properties of glass ionomer cements (GIC). Fuji II LC and Fuji IX GP Extra (GC Corporation, Tokyo, Japan) were used in the study. There were four groups (n = 11–18) for each material: a group without the addition of HA particles and three groups modified by incorporation of 2, 5, and 10 wt% HA. The tests were performed on a universal testing machine (Shimadzu, Duisburg, Germany) and descriptive statistics, two-way analysis of variance (ANOVA) for the comparison of three mechanical properties, and one-way ANOVA for the comparison of different concentrations for each material were performed. Regarding the Fuji IX groups, compressive strength (CS) and flexural strength (FS) were highest in the group without HA particles added. The differences in CS between the Fuji IX group without HA particles and the Fuji IX groups with 2 wt% HA and 10 wt% HA were significant. The Fuji II 5 wt% HA group exhibited higher diametral tensile strength (DTS) and CS than other Fuji II groups, but not significantly. The Fuji II group, modified with 10 wt% HA, exhibited significantly higher FS than the Fuji II group without HA particles (p < 0.05). Porous HA incorporated into the Fuji IX groups had a significant impact on mechanical properties only in the Fuji IX 5 wt% HA group. Fuji II groups modified with 10 wt% HA showed the most favorable results with respect to FS.

2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2020 ◽  
Vol 19 ◽  
pp. e208204
Author(s):  
Maria Helena Rossy Borges ◽  
Carmen Gilda Tavares Dias ◽  
Cristiane de Melo Alencar ◽  
Cecy Martins Silva ◽  
Renata Antunes Esteves

Aim: The purpose of this study was to compare the microhardness, diametral tensile strength, compressive strength and the rheological properties of self-adhesive versus conventional resin cements. Methods: Specimens of a conventional (RelyX ARC) and 3 self-adhesive (RelyX U200, Maxcem Elite, Bifix SE) types of resin cements were prepared. The Knoop test was used to assess the microhardness, using a Microhardness Tester FM 700. For the diametral tensile strength test, a tensile strength was applied at a speed of 0.6 mm/minute. A universal testing machine was used for the analysis of compressive strength and a thermo-controlled oscillating rheometer was used for the Rheology test. One-way ANOVA and Tukey’s test (α=0.05) were used for data analysis. Results: According to microhardness analysis, all the cements were statistically similar (p>0.05), except for Maxcem that presented lower hardness compared with the other cements in relation to the top surface (p<0.05). In the diametral tensile strength test, Relyx U200 and RelyX ARC cements were statistically similar (p>0.05), presented higher value when compared to the Maxcem and Bifix cements (p<0.05). The compressive strength of RelyX ARC and Maxcem Elite cements was statistically higher than RelyX U200 and Bifix cements (p<0.05). Regarding the rheology test, Maxcem Elite and RelyX ARC cements showed a high modulus of elasticity. Conclusions: The self-adhesive cements presented poorer mechanical properties than conventional resin cement. Chemical structure and types of monomers employed interfere directly in the mechanical properties of resin cements.


2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


2021 ◽  
Vol 9 (02) ◽  
pp. 104-110
Author(s):  
Akshay Punjabi ◽  
◽  
Rahul Rao ◽  
Ashish K. Jain ◽  
Meenakshi Verma ◽  
...  

Context:The quality of light curing units can profoundly influence mechanical properties of dental composite materials. Aim: To compare effect of Woodpecker RTA Mini-S and Elipar Deep Cure-L curing units onmechanical properties (compressive strength, diametral tensile strength and microhardness) of Filtek Bulk-Fill. Methods and Materials: A total of 32 samples of Filtek Bulk Fill composite were divided into 2 equal groups (n=16). 12 samples in each group were fabricated using a tooth shaped mold and 4 in circular rings to test compressive strength, microhardness and diametral tensile strength, respectively. Theblocks were evaluated for the above parameters using Universal Testing Machine and Vickers Microhardness Tester.Independent sample-t test was used in this study (p< 0.05). Results: The results of this study showed that the group of composites cured using Elipar Deep Cure-L curing unit showed better mechanical properties and the difference between the groups was statistically significant for compressive strength and diametral tensile strength (p < 0.05) Conclusion: It was concluded that a curing unit of higher intensity and quality of output used in conjugation with bulk fill composites are likely to give better results.


2014 ◽  
Vol 17 (1) ◽  
pp. 16 ◽  
Author(s):  
Paula Roberta Perondi ◽  
Pedro Henrique Cabral Oliveira ◽  
Alessandra Cassoni ◽  
André Figueiredo Reis ◽  
José Augusto Rodrigues

<p><strong>Objective:</strong> This study evaluated the ultimate tensile strength (UTS) and microhardness (µKH) of conventional (CO) and hybrid resin-modified glass ionomer (RM). <strong>Material and methods:</strong> Nine specimens to UTS and twelve for µKHN of glass ionomer materials were obtained using special molds. The materials were manipulated and CO groups were allowed to self-cure for five minutes and RM were subjected to light-activation as indicated by manufactures through a glass slide. All specimens were dark-stored in 100% relative humidity for 24h. For UTS test, specimens were tested in tension in a universal testing machine (crosshead speed of 1 mm/min) until failure. For µKHN test a Knoop diamond indenter was used to make five indentations in the upper/light irradiated surface of the specimens. UTS and µKHN data were submitted to one-way ANOVA, followed by Tukey’s test (α= 5%).  <strong>Results:</strong> The results for UTS were: Ionomaster: 7.0 (±1.6)A; Maxxion R: 8.8 (±3.7)A Vidrion R: 8.8 (±3.9)A; ChemFil Rock: 10.7 (±4.6)AB; Vitremer: 13.1 (±3.3)BC; Vitrofil R: 14.9 (±7.8)CD; Ionoseal: 14.5 (±8.2)CD; Resiglass: 16.3 (±2.3)D. The results for µKH: Ionomaster: 24.3 (±6.6)B; Maxxion R: 17.7 (±4.7)A, Vidrion R: 31.0 (±9.4) B; ChemFil Rock: 31.1 (±8.5)B; Vitremer: 20.3 (±3.3)A; Vitrofil R: 16.5 (±5.1)A; Ionoseal: 13.1 (±8.5)A; Resiglass: 21.6 (±5.2)A. <strong>Conclusion:</strong> It was observed that the hybrid resin-modified ionomers generally have higher cohesive strength than conventional ones, but lower microhardness.</p>


2011 ◽  
Vol 264-265 ◽  
pp. 508-512
Author(s):  
Ammar A. Mustafa ◽  
Khalid A. S. Al-Khateeb ◽  
Ahmad Faris Ismail

Experimental glass ionomer cement was prepared for the purpose of this study. Twenty disk specimens (16mm diameter x 10mm height) of test-GIC were prepared for the diametral tensile strength (DTS) test and twenty cylindrical specimens (6 mm diameter x 16mm height) were prepared for the compressive strength (CS) test. Specimens were stored in an artificial saliva at 37º C and (50±10%) of relative humidity in an incubator until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours, 7 days and 28 days. The specimens were tested in a Universal Testing Machine (Instron 1122, Instron corp., High Wycombe, U.K.) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The results have revealed that incorporation of lithium fluoride in the formula of the test GIC might impart an increase in the mechanical properties of the GICs


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Gilliard Lima Oliveira ◽  
Ceci Nunes Carvalho ◽  
Edilausson Moreno Carvalho ◽  
José Bauer ◽  
Adriana Mara Araújo Leal

Objective. To evaluate the compressive strength and fluoride ion release of conventional and resin-modified glass ionomer cement mixing methods (hand mix and mechanical mix) compared to ready-to-use ones. Materials and Methods. Two conventional glass ionomer cements (GICs) (Fuji II and Fuji II Caps), two resin-modified GICs (Fuji II LC and Fuji II L Caps), and one ready-to-use GIC (Ionoseal, Voco) were used. For the compressive strength test, cylindrical specimens (6 mm × 4 mm) of each group were prepared. The test was performed in a universal testing machine (EMIC DL2000). For the fluoride release test, specimens were prepared in the form of discs and placed in deionized/distilled water, which were replaced daily for 15 days. The fluoride ion release readings were performed on an electrode (Orion 96-09) connected to a digital ion analyzer (Quimis 0400ISE). The compressive strength data were analyzed with one-way ANOVA, and the ion release data were submitted to repeated measures ANOVA (material vs. time) and Holm–Sidak post test (α = 5%). Results. The one-way ANOVA showed statistical difference between the tested materials (p<0.001). Ionoseal showed the highest values of compressive strength (p<0.001). Mechanical manipulation increased the compressive strength only for conventional GIC, and resin-modified GIC did not present any statistical difference. Conventional GIC (mechanical mix) showed higher fluoride release on first day than the other groups tested. Conclusion. There was influence of the mixing methods of the materials on the compressive strength and fluoride release pattern of the glass ionomer cements.


Odontology ◽  
2021 ◽  
Author(s):  
Matias Mederos ◽  
Carlos Enrique Cuevas-Suarez ◽  
Walter Sanchez ◽  
Pablo Miranda ◽  
Alejandro Francia ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2004 ◽  
Vol 12 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Eduardo Bresciani ◽  
Terezinha de Jesus Esteves Barata ◽  
Ticiane Cestari Fagundes ◽  
Akimi Adachi ◽  
Marina Martins Terrin ◽  
...  

The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation), with two new Brazilian GIC's: Vitro-Molar (DFL) and Bioglass R (Biodinamica), all indicated for the Atraumatic Restorative Treatment (ART) technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height) for the diametral tensile strength (DTS) test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height) for the compressive strength (CS) test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05). The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.


Sign in / Sign up

Export Citation Format

Share Document