scholarly journals Formation of Bifunctional Octasilsesquioxanes via Silylative Coupling and Cross-Metathesis Reaction

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3966
Author(s):  
Małgorzata Bołt ◽  
Patrycja Żak ◽  
Beata Dudziec ◽  
Anna Schulmann ◽  
Bogdan Marciniec

Bifunctional silsesquioxanes create an attractive group of compounds with a wide range of potential applications, and recently they have gained much interest. They are known to be obtained mainly via hydrosilylation, but we disclose novel synthetic protocols based on different but complementary reactions, i.e., cross-metathesis (CM) and silylative coupling (SC). A series of cubic T8 type silsesquioxane derivatives with a broad scope of styryl substituents were synthesized in a one-pot procedure and characterized by spectroscopic and spectrometric methods. All of the new compounds can be obtained in a one-pot manner, which has an attractive impact on the synthetic procedure, as it is economic in terms of the isolation of intermediate products. Additionally, the methodology disclosed here enables the (E)-stereoselective introduction of styrenes derivative to the cubic T8 type core. The presented compounds can be interesting precursors for a further functionalization that may significantly increase the possibility of their application in the design and synthesis of new functional materials.

2019 ◽  
Vol 15 ◽  
pp. 1523-1533 ◽  
Author(s):  
András György Németh ◽  
György Miklós Keserű ◽  
Péter Ábrányi-Balogh

A new multicomponent reaction has been developed between isocyanides, sulfur and alcohols or thiols under mild reaction conditions to afford O-thiocarbamates and dithiocarbamates in moderate to good yields. The one-pot reaction cascade involves the formation of an isothiocyanate intermediate, thus a catalyst-free synthesis of isothiocyanates, as valuable building blocks from isocyanides and sulfur is proposed, as well. The synthetic procedure suits the demand of a modern organic chemist, as it tolerates a wide range of functional groups, it is atom economic and easily scalable.


Molbank ◽  
10.3390/m1271 ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. M1271
Author(s):  
Massimiliano Cordaro ◽  
Mariachiara Trapani

The development of new dyes for various fields of application is of primary interest for the scientific community, among these BODIPY are widely studied for their versatility. This communication describes the synthesis of a BODIPY dye on which a diacetoamidopyridine moiety is connected in meso position. The synthesis procedure requires a one-pot step and the dye is obtained with a yield of 20%. The diacetoamido portion contains chemical functionalities able to favor the interaction of BODIPY with complementary molecules, such as uracil or thymine, offering potential applications for the design of new functional materials or sensors.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
Zhiguo Zhao ◽  
Xue Li

Sodium iron hexafluoride (Na3FeF6), as a colorless iron fluoride, is expected to be an ideal host for rare earth ions to realize magneto-optical bi-functionality. Herein, monodispersed terbium ions (Tb3+) doped Na3FeF6 particles are successfully synthesized by a facile one-pot hydrothermal process. X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM) reveal that the Tb3+ doped Na3FeF6 micro-particles with regular octahedral shape can be assigned to a monoclinic crystal structure (space group P21/c). Under ultraviolet light excitation, the Na3FeF6:Tb3+ octahedral particles given orange-red light emission originated from the 5D4→7FJ transitions of the Tb3+ ions. In addition, the magnetism measurement indicates that Na3FeF6:Tb3+ octahedral particles are paramagnetic with high magnetization at room temperature. Therefore, the Na3FeF6:Tb3+ powders may find potential applications in the biomedical field as magnetic-optical bi-functional materials.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 133 ◽  
Author(s):  
Adrian Domiński ◽  
Tomasz Konieczny ◽  
Piotr Kurcok

Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host–guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of “smart” hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain “guest” and α-cyclodextrin “host” are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Naglaa F. H. Mahmoud ◽  
Ahmed El-Sewedy

A number of 2-amino-4-aryl-6-substituted pyridine-3,5-dicarbonitrile derivatives were synthesized via one-pot multicomponent condensation reactions of different aromatic aldehydes with malononitrile and different primary amines, using different molecular ratios and different reaction conditions to achieve considerable product yields. Moreover, we succeed, for the first time to develop a new method to synthesize the aforementioned under the fusion condition without using solvent and catalysts. With this method, a wide range of novel 2-amino-3,5-dicyano-4-aryl-6-substituted aminopyridine derivatives were synthesized with high yields and board substrate of functional groups. The synthesized pyridine derivatives were found to have a corrosion inhibition efficiency, the rate of which increased with the increasing concentration of the derivatives. The structures of the new compounds were elucidated by spectroscopic data and elemental analyses.


2016 ◽  
Vol 72 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Cigdem Hopa ◽  
Ismail Cokay

The design and synthesis of polymeric coordination compounds of 3dtransition metals are of great interest in the search for functional materials. The coordination chemistry of the copper(II) ion is of interest currently due to potential applications in the areas of molecular biology and magnetochemistry. A novel coordination polymer of CuIIwith bridgingN,N′-bis(2-hydroxyphenyl)-2,2-dimethylpropane-1,3-diamine (H2L-DM) and dicyanamide (dca) ligands,catena-poly[[[μ2-2,2-dimethyl-N,N′-bis(2-oxidobenzylidene)propane-1,3-diamine-1:2κ6O,N,N′,O′:O,O′]dicopper(II)]-di-μ-dicyanamido-1:2′κ2N1:N5;2:1′κ2N1:N5], [Cu2(C19H20N2O2)(C2N3)2]n, has been synthesized and characterized by CHN elemental analysis, IR spectroscopy, thermal analysis and X-ray single-crystal diffraction analysis. Structural studies show that the CuIIcentres in the dimeric asymmetric unit adopt distorted square-pyramidal geometries, as confirmed by the Addison parameter (τ) values. The chelating characteristics of theL-DM2−ligand results in the formation of a CuIIdimer with a double phenolate bridge in the asymmetric unit. In the crystal, the dimeric units are further linked to adjacent dimeric units through μ1,5-dca bridges to produce one-dimensional polymeric chains.


2021 ◽  
Author(s):  
Patrick Pfaff ◽  
Felix Anderl ◽  
Moritz Fink ◽  
Moritz Balkenhohl ◽  
Erick Carreira

We report a modular approach towards novel arylazotriazole photoswitches and their photophysical characterization. Addition of lithiated TIPS-acetylene to aryldiazonium tetrafluoroborate salts gives a wide range of azoacetylenes, constituting an underexplored class of stable intermediates. <i>In situ </i>desilylation transiently leads to terminal arylazoacetylenes that undergo copper-catalyzed cycloadditions (CuAAC) with a diverse collection of organoazides. These include complex molecules derived from natural products or drugs, such as colchicine, taxol, tamiflu, and arachidonic acid. The arylazotriazoles display near-quantitative photoisomerization and long thermal <i>Z</i>-half-lives. Using the method, we introduce for the first time the design and synthesis of a diacetylene platform that permits implementation of a consecutive and diversity-oriented approach linking two different conjugants to independently addressable acetylenes within a common photoswitchable azotriazole. This is showcased in the synthesis of several photoswitchable conjugates, with potential applications as photoPROTACs and photoswitchable biotin conjugates


2021 ◽  
Author(s):  
Patrick Pfaff ◽  
Felix Anderl ◽  
Moritz Fink ◽  
Moritz Balkenhohl ◽  
Erick Carreira

We report a modular approach towards novel arylazotriazole photoswitches and their photophysical characterization. Addition of lithiated TIPS-acetylene to aryldiazonium tetrafluoroborate salts gives a wide range of azoacetylenes, constituting an underexplored class of stable intermediates. <i>In situ </i>desilylation transiently leads to terminal arylazoacetylenes that undergo copper-catalyzed cycloadditions (CuAAC) with a diverse collection of organoazides. These include complex molecules derived from natural products or drugs, such as colchicine, taxol, tamiflu, and arachidonic acid. The arylazotriazoles display near-quantitative photoisomerization and long thermal <i>Z</i>-half-lives. Using the method, we introduce for the first time the design and synthesis of a diacetylene platform that permits implementation of a consecutive and diversity-oriented approach linking two different conjugants to independently addressable acetylenes within a common photoswitchable azotriazole. This is showcased in the synthesis of several photoswitchable conjugates, with potential applications as photoPROTACs and photoswitchable biotin conjugates


2020 ◽  
Vol 39 (1) ◽  
pp. 116-129
Author(s):  
Li Wang ◽  
Yuhong Qian ◽  
Yantao Sun ◽  
Bin Liu ◽  
Gang Wei

AbstractThe quantification of the interactions between biomolecules and materials interfaces is crucial for design and synthesis functional hybrid bionanomaterials for materials science, nanotechnology, biosensor, biomedicine, tissue engineering, and other applications. Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) provides a direct way for measuring the binding and unbinding forces between various biomolecules (such as DNA, protein, peptide, antibody, antigen, and others) and different materials interfaces. Therefore, in this review, we summarize the advance of SMFS technique for studying the interactions between biomolecules and materials interfaces. To achieve this aim, firstly we introduce the methods for the functionalization of AFM tip and the preparation of functional materials interfaces, as well as typical operation modes of SMFS including dynamic force spectroscopy, force mapping, and force clamping. Then, typical cases of SMFS for studying the interactions of various biomolecules with materials interfaces are presented in detail. In addition, potential applications of the SMFS-based determination of the biomolecule-materials interactions for biosensors, DNA based mis-match, and calculation of binding free energies are also demonstrated and discussed. We believe this work will provide preliminary but important information for readers to understand the principles of SMFS experiments, and at the same time, inspire the utilization of SMFS technique for studying the intermolecular, intramolecular, and molecule-material interactions, which will be valuable to promote the reasonable design of biomolecule-based hybrid nanomaterials.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1262-C1262
Author(s):  
Dominique Toledo ◽  
Yanko Moreno ◽  
Octavio Peña ◽  
Ricardo Baggio ◽  
Andrés Vega

Over the last decade the design and synthesis of metal-organic compounds with fascinating structural properties and potential applications as functional materials has been a major challenge in various fields of research.1Strategies for preparing these compounds are based on the careful selection of the constituent building blocks. 4'-(substituted)-4,2':6',4''-terpyridine ligands are considered versatile building blocks for the assembly of coordination polymers and networks with useful solid-state properties, such as magnetism, luminescence, redox activity, etc.2The divergent arrangements of N-donor atoms and the attachment of aryl substituents into the 4'-position of 4,2':6',4''-terpyridine allow to bridge two or more metal centers, giving rise to molecular assemblies of 1, 2 or 3 dimensions.3Our line of interest is the obtainment of compounds with emergent magnetic properties. Herein we present a copper complex surveying the new 4'-(quinolin-4-yl)-4,2':6',4''-terpyridine ligand (L), and formulated as [Cu(C5H1F6O2)2(C25H16N4·CHCl3)]n which was produced from the reaction of two equivalents of L with Cu(hfac)2, (hfac=hexafluoroacetylacetonate). The copper ion in trans-{CuN2(hfac)2} has an octahedral environment. The nitrogen atoms of the terminal pyridine rings coordinate to the paramagnetic centres, while the central ring remains uncoordinated. The linkage of the resulting polyhedra gives raise to an undulating 1D polymeric structure. Within these chains there are two main non-covalent interactions: π-stacking between the quinoline substituents and the pyridine rings and CH···F interactions due to CF3group of the hfac ligand. There are also weak CH···N, CH···π and π-π intermolecular interactions linking the L and CHCl3groups, which give stability to the crystal structure. Finally, we performed magnetic measurements, in order to determine the magnetic behaviour of our system. Acknowledgments: FONDECYT 1130433 project, CIPA of University of Concepción, LIA-MIF 836


Sign in / Sign up

Export Citation Format

Share Document