scholarly journals The Phase Relations of the Co-Ni-In Ternary System at 673 K and 873 K and Magnetic Properties of Their Compounds

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3990
Author(s):  
Tonghan Yang ◽  
Wei He ◽  
Guojian Chen ◽  
Weijing Zeng ◽  
Jinzhi Wang ◽  
...  

The phase relationships of the ternary Co-Ni-In system at 673 K and 873 K were investigated by means of powder X-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, and optical microscopy. Though CoIn2 does not exist at 873 K, the ternary solid solution Co1−xNixIn2 exists at both 673 K and 873 K with different composition ranges. The Rietveld refinements were carried out to investigate the crystal structure of Co1−xNixIn2 (x = 0.540, and 0.580) and Ni2−xCoxIn3 (x = 0.200). The magnetization dependence of temperature (MT) curves of Ni2−xCoxIn3 (x = 0.200) and Co1−xNixIn2 (x = 0.540) are similar to those of the ferromagnetic shape memory alloys Ni-Mn-A (A = Ga, Sn, and In), but do not undergo martensitic transformation. The maximum magnetic entropy changes in Ni2−xCoxIn3 (x = 0.200) and Co1−xNixIn2 (x = 0.540) under 3T are 1.25 and 1.475 J kg−1K−1, respectively.

2008 ◽  
Vol 52 ◽  
pp. 103-108 ◽  
Author(s):  
Sidananda Sarma ◽  
A. Srinivasan

Polycrystalline ingots of Co70–xNixGa30 (20 ≤ x ≤ 26) ferromagnetic shape memory alloy (FSMA) were prepared by arc melting elemental powders followed by homogenization at 1230 °C for 24 hrs and quenching in liquid nitrogen. Room temperature X-Ray diffraction (XRD) patterns of as-quenched samples exhibited single-phase tetragonal structure for alloy compositions with x = 21 to 26, and a two-phase structure (cubic A2-phase along with weak tetragonal phase) for the alloy with x = 20. Rietveld refinement was performed on the X-ray diffraction patterns to obtain the refined structural parameters. Differential Scanning Calorimeter (DSC) curves recorded from 30 °C to 250 °C revealed martensite-austenite and austenite-martensite transformations in all alloys except the alloy with composition x = 20. Low temperature ac magnetic susceptibility measurements confirmed the existence of martensitic transformations in the alloy with x = 20. The structural transformation temperatures show a linear variation with e/a ratio. All the alloys were ferromagnetic at room temperature. Curie temperature was determined using a high temperature ac magnetic susceptibility measurement set-up.


1998 ◽  
Vol 13 (5) ◽  
pp. 1327-1334 ◽  
Author(s):  
Srečo Škapin ◽  
Drago Kolar ◽  
Danilo Suvorov ◽  
Zoran Samardžija

Subsolidus phase relations in the BaTiO3–La2TiO5–TiO2 part of the ternary BaO–La2O3–TiO2 system at 1300 °C in air were determined. The phases were characterized by x-ray diffraction, scanning electron microscopy, and electron probe wavelength dispersive spectroscopic microanalysis. A combination of techniques was employed because of insensitivity in detecting secondary phases by x-ray diffraction. The location and extent of Ba6−xLa8+2x/3Ti18O54 ternary solid solution 0.2(1) ⩽ x ⩽ 2.3(1) and Ba1−yLayTi1−y/4 (VTi)y/4O3 binary solid solution 0 ⩽ y ⩽ 0.3 at 1300 °C was established. Tie lines between various barium polytitanates with a sequence of Ba6−xLa8+2x/3Ti18O54 solid solution regions were determined.


2009 ◽  
Vol 635 ◽  
pp. 167-172 ◽  
Author(s):  
Rajini B. Kanth ◽  
D. Bhattacharjya ◽  
P.K. Mukhopadhyay

Study o Ferromagnetic shape memory alloys (FSMAs) is an interesting topic of present day research because of their large magnetic field induced shape recovery. They are important materials for the development of sensors and actuator based applications. Attempt for miniaturization of these actuators and sensors have led to the study of thin films. Bulk CoNiAl alloys are promising FSMAs because of their higher ductility and large range of control over the magnetic and structural transformation temperatures. To investigate the physical properties in thin film form we fabricated CoNiAl alloy films by D.C. sputtering method on glass substrates (kept at room temperature) under various conditions. They were annealed in vacuum at 500 0C for 1h. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and ellipsometry. Thickness of the films was found to be lying between 70 and 272 nm. Fine grained microstructure was found for all the deposited films. The transformation temperatures of the samples were taken from the resistivity measurement done between 80 and 350 K. Magnetization measurements were also done between 80 and 400 K by using a vibrating sample magnetometer, but the Curie temperatures of the present films were not found to be below 400 K and magnetoelastic couplings were found to be rather weak.


2011 ◽  
Vol 704-705 ◽  
pp. 475-479
Author(s):  
Shun Kang Pan ◽  
Rui Yan ◽  
Huai Ying Zhou ◽  
Li Chun Cheng ◽  
Qing Rong Yao ◽  
...  

The isothermal section of the phase diagram of the ternary system Y–Fe–V at 773 K was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. It consists of 9 single-phase regions, 16 two-phase regions and 8 three-phase regions. The ternary compound YFe12-xVx (1.5≤x≤2.7, space group I4/mmm) with Mn12Th-type structure was confirmed in this system. At 773 K, the maximum solid solubility of V in Fe, and YFe2, is about 23 at.%, and 3 at.%, respectively, Fe in V is about 22 at.%. And that of Y in Fe, FeV and V don′t exceed 1 at.%.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document