Structural Characterization of Co70-xNixGa30 Ferromagnetic Shape Memory Alloys

2008 ◽  
Vol 52 ◽  
pp. 103-108 ◽  
Author(s):  
Sidananda Sarma ◽  
A. Srinivasan

Polycrystalline ingots of Co70–xNixGa30 (20 ≤ x ≤ 26) ferromagnetic shape memory alloy (FSMA) were prepared by arc melting elemental powders followed by homogenization at 1230 °C for 24 hrs and quenching in liquid nitrogen. Room temperature X-Ray diffraction (XRD) patterns of as-quenched samples exhibited single-phase tetragonal structure for alloy compositions with x = 21 to 26, and a two-phase structure (cubic A2-phase along with weak tetragonal phase) for the alloy with x = 20. Rietveld refinement was performed on the X-ray diffraction patterns to obtain the refined structural parameters. Differential Scanning Calorimeter (DSC) curves recorded from 30 °C to 250 °C revealed martensite-austenite and austenite-martensite transformations in all alloys except the alloy with composition x = 20. Low temperature ac magnetic susceptibility measurements confirmed the existence of martensitic transformations in the alloy with x = 20. The structural transformation temperatures show a linear variation with e/a ratio. All the alloys were ferromagnetic at room temperature. Curie temperature was determined using a high temperature ac magnetic susceptibility measurement set-up.

2009 ◽  
Vol 635 ◽  
pp. 167-172 ◽  
Author(s):  
Rajini B. Kanth ◽  
D. Bhattacharjya ◽  
P.K. Mukhopadhyay

Study o Ferromagnetic shape memory alloys (FSMAs) is an interesting topic of present day research because of their large magnetic field induced shape recovery. They are important materials for the development of sensors and actuator based applications. Attempt for miniaturization of these actuators and sensors have led to the study of thin films. Bulk CoNiAl alloys are promising FSMAs because of their higher ductility and large range of control over the magnetic and structural transformation temperatures. To investigate the physical properties in thin film form we fabricated CoNiAl alloy films by D.C. sputtering method on glass substrates (kept at room temperature) under various conditions. They were annealed in vacuum at 500 0C for 1h. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and ellipsometry. Thickness of the films was found to be lying between 70 and 272 nm. Fine grained microstructure was found for all the deposited films. The transformation temperatures of the samples were taken from the resistivity measurement done between 80 and 350 K. Magnetization measurements were also done between 80 and 400 K by using a vibrating sample magnetometer, but the Curie temperatures of the present films were not found to be below 400 K and magnetoelastic couplings were found to be rather weak.


2011 ◽  
Vol 674 ◽  
pp. 171-175
Author(s):  
Katarzyna Bałdys ◽  
Grzegorz Dercz ◽  
Łukasz Madej

The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with FSMA is magnetic shape memory, which gives a possibility to achieve relatively high strain (over 8%) caused by magnetic field. In this paper the effect of annealing on the microstructure and martensitic transition on Ni-Mn-Co-In ferromagnetic shape memory alloy has been studied. The alloy was prepared by melting of 99,98% pure Ni, 99,98% pure Mn, 99,98% pure Co, 99,99% pure In. The chemical composition, its homogeneity and the alloy microstructure were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase composition was also studied by X-ray analysis. The transformation course and characteristic temperatures were determined by the use of differential scanning calorimetry (DSC) and magnetic balance techniques. The results show that Tc of the annealed sample was found to decrease with increasing the annealing temperature. The Ms and Af increases with increasing annealing temperatures and showed best results in 1173K. The studied alloy exhibits a martensitic transformation from a L21 austenite to a martensite phase with a 7-layer (14M) and 5-layer (10M) modulated structure. The lattice constants of the L21 (a0) structure determined by TEM and X-ray analysis in this alloy were a0=0,4866. The TEM observation exhibit that the studied alloy in initial state has bigger accumulations of 10M and 14M structures as opposed from the annealed state.


Author(s):  
Arun Veeramani ◽  
John Crews ◽  
Gregory D. Buckner

This paper describes a novel approach to modeling hysteresis using a Hysteretic Recurrent Neural Network (HRNN). The HRNN utilizes weighted recurrent neurons, each composed of conjoined sigmoid activation functions to capture the directional dependencies typical of hysteretic smart materials (piezoelectrics, ferromagnetic, shape memory alloys, etc.) Network weights are included on the output layer to facilitate training and provide statistical model information such as phase fraction probabilities. This paper demonstrates HRNN-based modeling of two- and three-phase transformations in hysteretic materials (shape memory alloys) with experimental validation. A two-phase network is constructed to model the displacement characteristics of a shape memory alloy (SMA) wire under constant stress. To capture the more general thermo-mechanical behavior of SMAs, a three-phase HRNN model (which accounts for detwinned Martensite, twinned Martensite, and Austensite phases) is developed and experimentally validated. The HRNN modeling approach described in this paper readily lends itself to other hysteretic materials and may be used for developing real-time control algorithms.


1994 ◽  
Vol 08 (19) ◽  
pp. 1175-1183 ◽  
Author(s):  
G. RAVI CHANDRA ◽  
B. GOPALA KRISHNA ◽  
S. V. SURYANARAYANA ◽  
T. S. N. MURTHY

The effect of the addition of Sn on the superconducting properties of the Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O y system as functions of Sn concentration and heat treatment has been studied by dc electrical resistance, ac magnetic susceptibility, and X-ray diffraction. Tin addition suppresses the volume fraction of the high T c phase. Samples with Sn > 0.1 show metallic behavior up to LNT. The formation of the Ca 2 PbO 4 phase is promoted by Sn. This depletes the amount of Pb and Ca necessary for the formation of the 2223 phase, thus reducing the volume fraction of the 2223 phase. It is possible that at least a small fraction of tin substitutes some of the cationic sites of the starting composition. The results of the different measurements are presented.


2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2014 ◽  
Vol 895 ◽  
pp. 111-115 ◽  
Author(s):  
Hairul A.A. Hamid ◽  
Rauzah Hashim ◽  
John M. Seddon ◽  
Nicholas J. Brooks

The phase behaviour and self-assembly structural parameters of a pair of monosaccharide and disaccharide Guerbet branched-chain β-D-glycosides, namely 2-octyldodecyl β-D-glucoside (β-Glc-C12C8) and 2-octyldodecyl β-D-maltoside (β-Mal-C12C8), have been studied by means of optical polarizing microscopy (OPM) and small-angle X-ray diffraction at room temperature (25°C). These compounds are sugar-based glycolipid surfactants having a total chain length of C20, and differ based on the increasing number of hydroxyl groups of the sugar headgroup (glucose and maltose). The repeat spacings obtained by X-ray diffraction as a function of water content have been used to determine the limiting hydration for the two glycosides. At room temperature, β-Glc-C12C8 and β-Mal-C12C8 have limiting hydrations of 22 wt% and 25 wt%, corresponding to 8 10 and 10 12 water molecules per glycoside, respectively. At all water contents between 5 and 29 wt % water, these compounds adopt inverse hexagonal (HII) or fluid lamellar (Lα) phases. The structural parameters of these phases have been determined from the diffraction data, from the X-ray repeat spacings, densities and concentration of the glycosides.


2011 ◽  
Vol 04 (03) ◽  
pp. 225-229 ◽  
Author(s):  
WENJUAN WU ◽  
DINGQUAN XIAO ◽  
JIAGANG WU ◽  
JING LI ◽  
JIANGUO ZHU

( K 0.48 Na 0.52) NbO 3-x% Co 2 O 3 (x = 0, 0.03 and 0.05) (KNN-x% Co2O3 ) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. An orthorhombic phase was observed for all KNN-x% Co2O3 ceramics at room temperature, and two phase transitions were confirmed by the high temperature X-ray diffraction and the temperature dependence of the dielectric constant. The Co2O3 greatly improves the density and decreases the sintering temperature of KNN ceramics. The KNN-0.05 mol%Co2O3 ceramic exhibits good properties (d33 = 120 pC/N , k p = 0.41, Q m = 213 and T c = 407°C) and a good age stability. The multiferroic behavior was also observed at room temperature for the KNN-0.05 mol%Co2O3 ceramic, as confirmed by P–E loops and magnetic behavior.


2001 ◽  
Vol 674 ◽  
Author(s):  
Jian Zhou ◽  
Ralph Skomski ◽  
David J. Sellmyer ◽  
Wei Tang ◽  
George C. Hadjipanayis

ABSTRACTRecently, Ti-substituted Sm-Co permanent magnets have attracted renewed attention due to their interesting high-temperature coercivity. Our presentation deals with the effect of iron substitutions on the magnetic properties of the materials. X-ray diffraction shows that the investigated Sm(Co,Fe,Cu,Ti)z materials (z = 7.0 - 7.6) are two-phase magnets, consisting of 1:5 and 2:17 regions. The iron content affects both the coercivity and the magnetization. Depending on composition and heat treatment, some samples show a positive temperature coefficient of the coercivity in the temperature range from 22 °C to 550 °C. Moderate amounts of iron enhance the room-temperature coercivity. For example, the room-temperature coercivity of Sm(Co6.0Fe0.4Cu0.6Ti0.3) is 9.6 kOe, as compared to 7.6 kOe for Sm(Co6.4Cu0.6Ti0.3). At high temperatures, the addition of Fe has a deteriorating effect on the coercivity, which is as high as 10.0 kOe at 500 °C for Sm(Co6.4Cu0.6Ti0.3). The room-temperature magnetization increases on iron substitution, from 73 emu/g for Sm(Co6.4Cu0.6Ti0.3) to 78 emu/g for Sm(Co6.0Fe0.4Cu0.6Ti0.3). The observed temperature dependence is ascribed to the preferential dumbbell-site occupancy of the Fe atoms.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1771-1776
Author(s):  
D. Y. CONG ◽  
Y. D. ZHANG ◽  
C. ESLING ◽  
Y. D. WANG ◽  
X. ZHAO ◽  
...  

Ni - Mn - Ga ferromagnetic shape memory alloys (FSMAs) have received great attention during the past decade due to their giant magnetic shape memory effect and fast dynamic response. The crystal structure and crystallographic features of two Ni - Mn - Ga alloys were precisely determined in this study. Neutron diffraction measurements show that Ni 48 Mn 30 Ga 22 has a Heusler austenitic structure at room temperature; its crystal structure changes into a seven-layered martensitic structure when cooled to 243K. Ni 53 Mn 25 Ga 22 has an I4/mmm martensitic structure at room temperature. Electron backscattered diffraction (EBSD) analyses reveal that there are only two martensitic variants with a misorientation of ~82° around <110> axis in each initial austenite grain in Ni 53 Mn 25 Ga 22. The investigation on crystal structure and crystallographic features will shed light on the development of high-performance FSMAs with optimal properties.


Author(s):  
E. Louise R. Robins ◽  
Michela Brunelli ◽  
Asiloé J. Mora ◽  
Andrew N. Fitch

AbstractDSC and high-resolution powder X-ray diffraction measurements in the range 295 K–100 K show that RS-thiocamphor undergoes two phase transitions. The first, at around 260 K on cooling, is from the room-temperature body-centred-cubic phase to a short-lived intermediate. At 258 K the low-temperature form starts to appear. The crystal structure of the latter is orthorhombic, space group


Sign in / Sign up

Export Citation Format

Share Document