scholarly journals The Influence of the Third Element on Nano-Mechanical Properties of Iron Borides FeB and Fe2B Formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) Alloys

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4155
Author(s):  
Ivana Kirkovska ◽  
Viera Homolová ◽  
Ivan Petryshynets ◽  
Tamás Csanádi

In this study, the influence of alloying elements on the mechanical properties of iron borides FeB and Fe2B formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) alloys were evaluated using instrumented indentation measurement. The microstructural characterization of the alloys was performed by means of X-ray diffraction and scanning electron microscope equipped with an energy dispersive X-ray analyzer. The fraction of the phases present in the alloys was determined either by the lever rule or by image analysis. The hardest and stiffest FeB formed in Fe-B-X (X = C, Cr, Mn) alloys was observed in the Fe-B-Cr alloys, where indentation hardness of HIT = 26.9 ± 1.4 GPa and indentation modulus of EIT = 486 ± 22 GPa were determined. The highest hardness of Fe2B was determined in the presence of tungsten as an alloying element, HIT = 20.8 ± 0.9 GPa. The lowest indentation hardness is measured in manganese alloyed FeB and Fe2B. In both FeB and Fe2B, an indentation size effect was observed, showing a decrease of hardness with increasing indentation depth.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
T. Bendo ◽  
H. C. Pavanati ◽  
A. N. Klein ◽  
A. E. Martinelli ◽  
A. M. Maliska

Plain iron samples produced by powder metallurgy were submitted to a single thermal cycle involving plasma-assisted sintering and simultaneous surface alloying with Mo followed by nitriding using a plasma reactor. The microstructural characterization of the samples was carried out by optical and scanning electron microscopy in addition to X-ray diffraction. Microhardness tests were also performed. EDX line profiles of the concentration of Mo from the surface to the bulk of the sintered samples showed that the alloying element diffused down to depths of about 25 μm under the sintering conditions applied. A significant increase in microhardness was observed for samples enriched with Mo and subsequently nitrided. This behavior was attributed to the precipitation of nitrides and the presence of Mo in solid solution.


2015 ◽  
Vol 1766 ◽  
pp. 3-8
Author(s):  
D. C. Rojas-Olmos ◽  
N. López-Perrusquia ◽  
M. A. Doñu-Ruiz ◽  
J.A Juanico Loran ◽  
C. R. Torres San Miguel

ABSTRACTThis work studies the change microstructural and mechanical properties of biomedical component hot forging of titanium; was assessed quantitatively and qualitatively the microstructural features obtained in this titanium biocompatible Ti6Al4V. The forging process was obtained at temperature of 950 °C, after by technical optical microscopy are obtained the microstructural characterization showing the phases present after forging. Likewise, the technical X-ray diffraction (XRD) shows the presence of the phases. Also is evaluated the hardness and modulus of elasticity by technical nanoindentation. The characterization of this material has the objective to show that the results obtained with temperature study of 950 °C. Likewise by the forging process obtained a type phases and optimal properties required for these biomedical materials.


2021 ◽  
Vol 2 (2) ◽  
pp. 1365-1374
Author(s):  
Marcelo Vitor Ferreira Machado ◽  
José Brant De Campos ◽  
Marilza Sampaio Aguilar ◽  
Vitor Santos Ramos

The purpose of this work is to determine one of the most important mechanical properties of brittle materials, the hardness. Our work material is called hydroxyapatite (HAP), in this case, using chicken egg shells as precursor. Once considering the experimental parameters of force and time of the indentation, the Vickers microhardness measurements were obtained for both for HAP, synthesized from chicken egg shells and commercial hydroxyapatite for comparison purposes. The microstructural characterization of the materials, as well as their specimens, has been performed by the microscope scanning, x-ray diffraction and thermogravimetric analyses.


2016 ◽  
Vol 869 ◽  
pp. 946-951 ◽  
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Marília Afonso Rabelo Buzalaf ◽  
Carlos Roberto Grandini

Titanium is used in the biomedical field due to its mechanical strength/density, corrosion resistance, and biocompatibility. In this paper, the preparation, and the structural, microstructural, and mechanical characterization of Ti-20Zr-2.5Mo and Ti-20Zr-7.5Mo alloys are presented. The elements were melted into an arc furnace with an argon controlled atmosphere. To determine the amount of impurities present in each alloy, an analysis of the chemical composition was conducted using EDS. The samples were characterized by measurements of density, X-ray diffraction (with the diffractograms refined by the Rietveld method), and optical and scanning electron microscopy. The mechanical properties were evaluated using Vickers microhardness test and modulus of elasticity. The results showed that that α’/α’’ and α’'/β phases coexisted in both of the prepared alloys, respectively. The alloys have higher hardness than cp-Ti and their modulus of elasticity values are very close to the modulus values of cp-Ti.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


2020 ◽  
Author(s):  
Sahar. Mokhtari ◽  
Anthony.W. Wren

AbstractThis study addresses issues with currently used bone adhesives, by producing novel glass based skeletal adhesives through modification of the base glass composition to include copper (Cu) and by characterizing each glass with respect to structural changes. Bioactive glasses have found applications in fields such as orthopedics and dentistry, where they have been utilized for the restoration of bone and teeth. The present work outlines the formation of flexible organic-inorganic polyacrylic acid (PAA) – glass hybrids, commercial forms are known as glass ionomer cements (GICs). Initial stages of this research will involve characterization of the Cu-glasses, significant to evaluate the properties of the resulting adhesives. Scanning electron microscopy (SEM) of annealed Cu glasses indicates the presence of partial crystallization in the glass. The structural analysis of the glass using Raman suggests the formation of CuO nanocrystals on the surface. X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS) further confirmed the formation of crystalline CuO phases on the surface of the annealed Cu-glass. The setting reaction was studied using Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the Cu containing adhesives exhibited gel viscoelastic behavior and enhanced mechanical properties when compared to the control composition. Compression data indicated the Cu glass adhesives were efficient at energy dissipation due to the reversible interactions between CuO nano particles and PAA polymer chains.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1377-1382 ◽  
Author(s):  
SEULKI PARK ◽  
JINMYUNG CHOI ◽  
BONGGYU PARK ◽  
IKMIN PARK ◽  
YONGHO PARK ◽  
...  

Hypereutectic Al - Si alloys with fine and evenly distributed Si precipitates have superior mechanical properties In this study, hypereutectic Al - Si alloy powders which contained 15 and 20wt% Si were prepared by a gas atomization process. 1, 3 and 5wt% AlN particles were blended with the Al - Si alloy powders using turbular mixer. The mixture was consolidated by Hot Press at 550°C for 1h under 60MPa. Relative density of the sintered samples was about 98% of theoretical density. This study was investigated by two ways. One is the effect of reinforcement weight fraction and the other is the effect of Silicon contents on the mechanical properties of the composite. Microstructural characterization and phase evaluation were carried out using X-ray Diffraction, Scanning Electron Microscopy equipped with Energy Dispersive Spectrometer. The results showed that the smaller the reinforcement particle size was and the better its distribution was, the higher ultimate tensile strength and hardness were.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


Sign in / Sign up

Export Citation Format

Share Document