scholarly journals Corrosion Resistance of Inconel 625 CMT-Cladded Layers after Long-Term Exposure to Biomass and Waste Ashes in High-Temperature Conversion Processes

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4374
Author(s):  
Aleksandra Błoniarz ◽  
Marcus Schreiner ◽  
Markus Reinmöller ◽  
Agnieszka Kopia

The present study investigated the effect of corrosion on an Inconel 625-cladded layer using the cold metal transfer (CMT) method. The corrosion was caused by various ashes and high process temperatures. The ashes were obtained from the biomasses of mixed wood and oat straw, as well as from sewage sludge, by ashing. Long-term corrosion tests were carried out at 650 °C over a period of 1000 h. The chemical composition, mineral phases, and corrosion effects were studied by X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-rays (SEM–EDX), and X-ray diffraction (XRD) from the surface and on the cross-section of the samples. The chemical composition of the ashes was quite different, but representative of their particular fuel. Together with the effects of the operating temperature and mass transfer, significant differences in the degree of the corrosion depth were detected for the various ashes. For the investigated samples, the corrosion mechanisms were inferred based on the identified corrosion products.

1990 ◽  
Vol 34 ◽  
pp. 325-335 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

AbstractThe mass absorption coefficient is a useful parameter for quantitative characterization of materials. If the chemical composition of a sample is known, the mass absorption coefficient can be calculated directly. However, the mass absorption coefficient must be determined empirically if the chemical composition is unknown. Traditional methods for determining the mass absorption coefficient involve measuring the transmission of monochromatic X-rays through a sample of known thickness and density. Reynolds (1963,1967), however, proposed a method for determining the mass absorption coefficient by measuring the Compton or inelastic X-ray scattering from a sample using Mo radiation on an X-ray fluorescence spectrometer (XRF). With the recent advances in solid-state detectors/electronics for use with conventional powder diffractometers, it is now possible to readily determine mass absorption coefficients during routine X-ray diffraction (XRD) analyses.Using Cu Kα radiation and Reynolds’ method on a Siemens D-500 diffractometer fitted with a Kevex Si(Li) solid-state detector, we have measured the mass absorption coefficients of a suite of minerals and pure chemical compounds ranging in μ/ρ from graphite to Fe-metal (μ/ρ = 4.6-308 using Cu Kα radiation) to ±4.0% (lσ). The relationship between the known mass absorption coefficient and the inverse count rate is linear with a correlation coefficient of 0.997. Using mass absorption coefficients, phase abundances can be determined during quantitative XRD analysis without requiring the use of an internal standard, even when an amorphous component is present.


2014 ◽  
Vol 59 (3) ◽  
pp. 1081-1084 ◽  
Author(s):  
M. Rozmus-Górnikowska ◽  
Ł. Cieniek ◽  
M. Blicharski ◽  
J. Kusiński

Abstract The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.The investigation showed that microsegregation occurring during the weld overlay solidification makes the dendrite cores to be richer in Ni, Fe and Cr and in the between dendrite arms in Mo and Nb. Niobium shows the strongest tendency to segregation during solidification; molybdenum tends to segregate less and chromium has the lowest tendency to segregation. Although Inconel 625 is a solid solution strengthened alloy, Nb and Mo-rich phases are formed in the between dendrite arms of weld overlays.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.


1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


1988 ◽  
Vol 13 (4) ◽  
pp. 458-462
Author(s):  
H. TEISEN ◽  
J. HJARBAEK
Keyword(s):  
X Rays ◽  

The X-rays of 17 patients with fresh fractures of the lunate bone have been reviewed. The fractures were classified according to their radiological appearances and according to the vascular anatomy of the lunate. A long term X-ray follow-up examination was performed.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 311 ◽  
Author(s):  
Carlotta Giacobbe ◽  
Jonathan Wright ◽  
Dario Di Giuseppe ◽  
Alessandro Zoboli ◽  
Mauro Zapparoli ◽  
...  

Nowadays, due to the adverse health effects associated with exposure to asbestos, its removal and thermal inertization has become one of the most promising ways for reducing waste risk management. Despite all the advances in structure analysis of fibers and characterization, some problems still remain that are very hard to solve. One challenge is the structure analysis of natural micro- and nano-crystalline samples, which do not form crystals large enough for single-crystal X-ray diffraction (SC-XRD), and their analysis is often hampered by reflection overlap and the coexistence of multiple fibres linked together. In this paper, we have used nano-focused synchrotron X-rays to refine the crystal structure of a micrometric tremolite fibres from Val d’Ala, Turin (Italy) after various heat treatment. The structure of the original fibre and after heating to 800 °C show minor differences, while the fibre that was heated at 1000 °C is recrystallized into pyroxene phases and cristobalite.


Sign in / Sign up

Export Citation Format

Share Document