scholarly journals Enhancing carbonation and chloride resistance of autoclaved concrete by incorporating nano-CaCO3

2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.

2010 ◽  
Vol 168-170 ◽  
pp. 518-522 ◽  
Author(s):  
Zhi Hua Ou ◽  
Bao Guo Ma ◽  
Shou Wei Jian

Fourier Transform Infrared Spectroscopy (FT-IR), thermal analysis and X-Ray Diffraction (XRD) are commonly performed to study the hydration products in cement pastes. The three methods were compared in this frame to detect products of cement hydration at different ages, especially at early ages (before 24h ages). The results indicate from the present experiment that CH (Calcium hydroxide) can be detected by three methods at all ages; C-S-H can be distinguished by FT-IR at all ages; ettringite may be detected by FT-IR before 24h ages and by XRD at all ages; and monosulphate can be detected by FT-IR before 24h ages. The process of cement hydration, characterized by formation and development of some hydration products, can be clearly observed by three methods. FT-IR is suggested for detecting the major hydration products before 24h ages, FT-IR and XRD are suggested for detecting the major hydration products after 24h ages, and thermal analysis is suggested for analyzing the degree of hydration quantitatively.


2001 ◽  
Vol 136 (3-4) ◽  
pp. 181-183 ◽  
Author(s):  
Nikos A. Voglis ◽  
Glykeria T. Kakali ◽  
Sotiris G. Tsivilis

2010 ◽  
Vol 44-47 ◽  
pp. 2592-2596
Author(s):  
Wei Lun Wang ◽  
Peng Liu

In this paper, the influence of curing time on the compressive strength and pore structure of the Portland cement concrete was investigated. The phase composition and morphology of hydration products of Portland cement were analyzed with X-ray diffraction (XRD). In addition, the porosity and pore distribution of the concrete were also researched using mercury intrusion porosimetry (MIP), surface area and porosity analyzer (BET). The results show that the influence of curing time on the compressive strength and pore structure of the concrete is obvious. With curing time increasing, the compressive strength of the concrete increased and the porosity decreased. The corresponding fractal dimension of the pore and the microstructure were changed, as well. With time increasing, more hydration products were produced.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1938
Author(s):  
Luís Urbano D. Tambara Júnior ◽  
Janaíde C. Rocha ◽  
Malik Cheriaf ◽  
Pilar Padilla-Encinas ◽  
Ana Fernández-Jiménez ◽  
...  

This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (Na2SO4, Na2CO3, and Na2SiO3) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved. Ettringite and AH3, are the majority hydration products, while monosulfates are absent in all of the samples. All three salts hasten CSA hydration and raise the amount of ettringite formed. Na2SO4 induces cracking in the ≥28-d pastes due to post-hardening gypsum and ettringite formation from the excess SO42– present. Anhydrite dissolves more rapidly in the presence of Na2CO3, prompting carbonation. Na2SiO3 raises compressive strength and exhibits strätlingite as one of its reaction products.


2020 ◽  
Vol 195 ◽  
pp. 03044
Author(s):  
Zi YING ◽  
Yu-jun Cui ◽  
Nadia Benahmed ◽  
Myriam Duc

Lime treatment is widely applied to improve the workability and long-term durability of soils. In this study, the curing time effect on the mineralogy and microstructure of lime-treated soil was investigated. The soil samples were prepared with 2 % lime and statically compacted at dry (w = 17 %) and wet (w = 20%) sides of optimum. X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP) were performed on lime-treated soil at various curing times. The presence of XRD peaks attributed to portlandite even after 150 days curing time indicated that it was not totally converted in cementitious compounds after reaction with silica and alumina from clay minerals. By contrast, no obvious XRD reflections of well-crystallized cementitious compounds were identified. Furthermore, all samples compacted at dry and wet side of optimum exhibited bi-modal pore size distribution, with a decrease of macro-pore frequency with increasing water content. The microstructure changes with increasing curing time did not follow monotonic tendency. On the whole, the quantities of pores less than 0.006 μm and micro-pores increased and the quantity of macro-pores decreased with increasing curing time due to the possible creation of poorly crystallized or amorphous cementitious compounds.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 269
Author(s):  
Kailun Xia ◽  
Yue Gu ◽  
Linhua Jiang ◽  
Mingzhi Guo ◽  
Lei Chen ◽  
...  

To date, reinforcement concrete is the main construction material worldwide. As the concentration of atmospheric CO2 is steadily increasing, carbonation of the reinforcement concrete becomes a pressing concern. In this study, novel surface protective materials (SPMs) modified with hybrid nanoSiO2 (HNS), fly ash, and slag were developed to reduce CO2 emissions and extend the service life of the reinforcement concrete. The carbonation depths were measured by phenolphthalein to reflect the carbonation resistance. X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA) were conducted to analyze the chemical components of the samples after carbonation. In addition, MIP was carried out to examine the microstructures of the samples prior to carbonation. Thermodynamic modeling was employed to calculate the changes in the phase assemblages of each blends in an ideal situation. The experimental results showed that the carbonation depth and CaCO3 content of the SPM modified with HNS decreased by 79.0% and 64.6% compared with the reference, respectively. The TGA results showed that after carbonation, the CaCO3 contents were 4.40% and 12.42% in the HNS modified samples and reference samples, respectively. MIP analysis demonstrated that the incorporation of HNS in SPM led to a 48.3% and 58.5% decrease in big pores and capillary pores, respectively. Overall, the SPMs modified with HNS in this study possessed better carbonation resistance and refined pore structures.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fengyuan Li ◽  
Chaojie Wang ◽  
Yangyang Xia ◽  
Yanjie Hao ◽  
Peng Zhao ◽  
...  

To determine the mechanism and strength characteristics of solidification of silt by a permeable polyurethane grouting material, the effects of polymer content, soil moisture, and immersion time on the unconfined compressive strength (UCS) of the silt have been studied. The results showed that the permeable polymer grouting material can significantly improve the performance of silt: (1) A higher amount of polymer produced a greater strength in the solidified soil. (2) The strength of the solidified soil increased as the immersion time was increased. (3) Moisture in the soil was not conducive to improving the strength of the solidified soil. The X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) have proven that polyurethane does not react with the silt, but they could improve the strength of the silt through physical action. Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) were performed to find that polymers can reduce soil porosity, and the addition of polyurethane improved the strength of the silt mainly through adhesion, wrapping, filling, and bridging.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1309 ◽  
Author(s):  
Karla Čech Barabaszová ◽  
Sylva Holešová ◽  
Kateřina Šulcová ◽  
Marianna Hundáková ◽  
Barbora Thomasová

Microbial infection and biofilm formation are both problems associated with medical implants and devices. In recent years, hybrid organic-inorganic nanocomposites based on clay minerals have attracted significant attention due to their application potential in the field of antimicrobial materials. Organic drug/metal oxide hybrids exhibit improved antimicrobial activity, and intercalating the above materials into the interlayer of clay endows a long-term and controlled-release behavior. Since antimicrobial activity is strongly related to the structure of the material, ultrasonic treatment appears to be a suitable method for the synthesis of these materials as it can well control particle size distribution and morphology. This study aims to prepare novel, structurally stable, and highly antimicrobial nanocomposites based on zinc oxide/vermiculite/chlorhexidine. The influence of ultrasonic treatment at different time intervals and under different intercalation conditions (ultrasonic action in a breaker or in a Roset’s vessel) on the structure, morphology, and particle size of prepared hybrid nanocomposite materials was evaluated by the following methods: scanning electron microscopy, X-ray diffraction, energy dispersive X-ray fluorescence spectroscopy, carbon phase analysis, Fourier transforms infrared spectroscopy, specific surface area measurement, particle size analysis, and Zeta potential analysis. Particle size analyses confirmed that the ultrasonic method contributes to the reduction of particle size, and to their homogenization/arrangement. Further, X-ray diffraction analysis confirmed that ultrasound intercalation in a beaker helps to more efficiently intercalate chlorhexidine dihydrochloride (CH) into the vermiculite interlayer space, while a Roset’s vessel contributed to the attachment of the CH molecules to the vermiculite surface. The antibacterial activity of hybrid nanocomposite materials was investigated on Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus, Enterococcus faecalis) bacterial strains by finding the minimum inhibitory concentration. All hybrid nanocomposite materials prepared by ultrasound methods showed high antimicrobial activity after 30 min, with a long-lasting effect and without being affected by the concentration of the antibacterial components zinc oxide (ZnO) and CH. The benefits of the samples prepared by ultrasonic methods are the rapid onset of an antimicrobial effect and its long-term duration.


NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950138 ◽  
Author(s):  
Sai Zhang ◽  
Shijun Yue ◽  
Jiajia Li ◽  
Jianbin Zheng ◽  
Guojie Gao

Au nanoparticles anchored on core–shell [Formula: see text]-Fe2O3@SnO2 nanospindles were successfully constructed through hydrothermal synthesis process and used for fabricating a novel nonenzymatic dopamine (DA) sensor. The structure and morphology of the Au/[Formula: see text]-Fe2O3@SnO2 trilaminar nanohybrid film were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the sensor were investigated by cyclic voltammetry and amperometry. The experimental results suggest that the composites have excellent catalytic property toward DA with a wide linear range from 0.5[Formula: see text][Formula: see text]M to 0.47[Formula: see text]mM, a low detection limit of 0.17[Formula: see text][Formula: see text]M (S/[Formula: see text]) and high sensitivity of 397.1[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text]. In addition, the sensor exhibits long-term stability, good reproducibility and anti-interference.


Sign in / Sign up

Export Citation Format

Share Document