scholarly journals Experimental Investigation on Behavior of Rectangular Concrete-Filled Tubular Columns Considering Diaphragms

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4412
Author(s):  
Sang-Lyul Cha ◽  
Jung-Soo Lee ◽  
Chan-Kyu Park ◽  
Jin-Keun Kim ◽  
Seung-Hee Kwon

Concrete-filled tubular (CFT) columns have been widely used as structural members because CFT columns synergize the advantages of steel and concrete resulting in high strength, high ductility, and large energy dissipation capacity. Numerous studies have been performed to understand the behavior of CFT columns. However, the behavior of CFT columns remains uncertain due to their inelastic behavior and uncertain confinement effects, especially when failure occurs. In addition, diaphragms, which are generally installed, make it more complicated to understand the behavior of CFT columns. The purpose of this study is to investigate the effects of the diaphragms on the failure behavior of the CFT columns. To this end, eighteen rectangular CFT columns were tested with five different loading cases. The experimental results suggest that the size of the diaphragm has significant effects on the compressive strength and toughness of the CFT columns. In order to facilitate the proper composite actions of steel and concrete, the size of a diaphragm has to be at least three-quarters of the cross-sectional area.

2014 ◽  
Vol 622-623 ◽  
pp. 201-206 ◽  
Author(s):  
Kenichiro Mori ◽  
Tomoyoshi Maeno ◽  
Shohei Nakamoto

A hot spline forming process of die-quenched gear drums using resistance heating of a side wall of a cup formed by cold deep drawing and ironing was developed. The side wall having uniform cross-sectional area is resistance-heated by passage of the current in the axial direction, the heated side wall of the drawn cup is ironed and is finally die-quenched. The gear drum was successfully formed and the hardness was between 400 and 500 HV. Not only the formability was improved but also the formed dram was hardly oxidised because of rapid resistance heating.


Author(s):  
Majahar M. Baraskar ◽  
Pranil Shetake ◽  
Prof. V. M Bogar ◽  
Dr. Y. M Ghugal

Steel is used in construction industry due to its hardness and tensile strength. Cold formed steel is type of steel which is manufactured at lower temperature. Cold form steel became more popular in twentieth century in construction industry due to its high strength to weight ratio and post-buckling strength. The purpose of this study is to study the behavior of cold-formed steel sections of different shapes but of same cross sectional area for compressive loading. Effect of lips within same cross sectional area, effect of perforation and shape stiffener is evaluated on different sections as channel section, Z section and hat section. Eigen value buckling analysis was carried out to on twelve different models to obtain the buckling load and failure pattern. ANSYS WORKBENCH software was used for numerical simulation of sections. I.S. 801:1975 has been taken under consideration wherever required. Based upon the results, optimum section in each of cases as with lips, without lips and perforated amongst all three sections is suggested. Effect of shape stiffeners provided by previous researcher P. Manikandan on solid sections is evaluated to check its suitability with perforated sections.


2011 ◽  
Vol 255-260 ◽  
pp. 215-219
Author(s):  
Cheng Wei Huang ◽  
Rui Shao ◽  
De Li Zhang

The beam string structure,a new self-balancing system is a combination of a string (Cable), pole and beam-column (beam, arch). Because the beam string structure make full use of tensile properties of high-strength cord, force became more reasonable, transportation became more convenient and construction became more simple for the new self-balancing system. The beam string structure became a new structure with a good value and prospects. In this paper the effects of the static performance of the single truss string structure are researched through analyzing the influence of prestressed cable, pole pitch, blow-span ratio of cable and cross-sectional area of cable using of finite element theory. The results of the reasonable selection of string truss design parameters a valuable reference.


2013 ◽  
Vol 395-396 ◽  
pp. 279-283
Author(s):  
Min Huang ◽  
Yu Wang ◽  
Ya Ni Zhang ◽  
Yue Wei Xie ◽  
Shuo Feng Li

In order to improve the toughness of oil casing steel N80 without the sacrifice of its original high strength, an intercritical quenching treatment was conducted under the temperature determined by a differential scanning calorimetry (DSC) analysis. Effects of intercritical quenching on the microstructure of oil casing steel N80 were characterized by means of optical microscope (OM) and scanning electron microscope (SEM). Tensile strength, reduction of cross-sectional area and microhardness were measured to evaluate the mechanical property of oil casing steel N80 after intercritical quenching treatment. The study results show that the tensile strength and microhardness of intercritical quenched oil casing steel N80 consisting of ferrite (F) and martensite (M) is slightly lower than that of tempered oil casing steel N80 composing of sorbite (S), yet which is still higher than that of full annealled oil casing steel N80 composing of pearlite (P) and a little amount of ferrite (F). In particular, the reduction of cross-sectional area of oil casing steel N80 intercritical quenched at 740°C is higher than those of tempered and full annealled. Additionally, both dimple and cleavage can be found on the impact fracture surface of N80 steel after intercritical quenching at 740°C. The toughness of oil casing steel N80 can be obviously improved by the intercritical quenching treatment at 740°C due to the formation of ferrite (F).


1997 ◽  
Vol 119 (4) ◽  
pp. 851-853 ◽  
Author(s):  
G. R. Stroes ◽  
I. Catton

This paper discusses an experimental investigation of the performance of capillary channels with sinusoidal versus triangular geometry. Results indicate that for equivalent cross-sectional area, angle of inclination, and heat input from below, a triangular groove geometry sustains a larger wetted area while a sinusoidal groove geometry supports a greater average heat flux.


Author(s):  
Feng Zhenping ◽  
Shen Zuda ◽  
Xiang Yimin

The aerodynamic characteristics of a variable area nozzleless volute (VAV) for small radial inflow turbines are studied with the aid of cold air tests in which flow parameters inside the volute channel and at the outlet of the nozzleless ring are measured for cases of various cross-sectional areas. The experimental investigation shows that the desired aerodynamic parameters, especially the outlet flow angle α1 as well as the mass flow rate range can be obtained by varying the croes-sectional area of the VAV. A reasonable approximate method for calculating the average outlet flow angle α1 is presented in which the variation of the circulation in the flow is taken into account.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
A. L. Gregory ◽  
A. Agarwal ◽  
J. Lasenby

A quarter of the world's population experience wheezing. These sounds have been used for diagnosis since the time of the Ebers Papyrus ( ca 1500 BC). We know that wheezing is a result of the oscillations of the airways that make up the lung. However, the physical mechanisms for the onset of wheezing remain poorly understood, and we do not have a quantitative model to predict when wheezing occurs. We address these issues in this paper. We model the airways of the lungs by a modified Starling resistor in which airflow is driven through thin, stretched elastic tubes. By completing systematic experiments, we find a generalized ‘tube law’ that describes how the cross-sectional area of the tubes change in response to the transmural pressure difference across them. We find the necessary conditions for the onset of oscillations that represent wheezing and propose a flutter-like instability model for it about a heavily deformed state of the tube. Our findings allow for a predictive tool for wheezing in lungs, which could lead to better diagnosis and treatment of lung diseases.


Sign in / Sign up

Export Citation Format

Share Document