scholarly journals Assessment of Compatibility between Various Intraoral Scanners and 3D Printers through an Accuracy Analysis of 3D Printed Models

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4419
Author(s):  
Chang-Hee Im ◽  
Ji-Man Park ◽  
Jang-Hyun Kim ◽  
You-Jung Kang ◽  
Jee-Hwan Kim

To assess the accuracy of various intraoral scanners (IOSs) and to investigate the existence of mutual compatibility that affects the accuracy between IOS and 3-dimensional (3D) printing using a scan quadrant model. For clinical implication, crown preparations and cavity design according to prosthetic diagnosis and treatment considerations must be acquired by a digital scanner. The selected typodont model was scanned using a reference scanner, from which reference (Ref) standard tessellation language (STL) data were created. Data obtained by scanning the typodont model with IOSs based on three different technologies were divided into three groups (CS3600, i500, and Trios3). Scanned data from the groups were divided into sub-groups of digital light processing (DLP), fused deposition modeling (FDM), and stereolithography apparatus (SLA), based on which 3D printed models (3DP) were fabricated. The 3DP dental models were scanned to obtain a total of 90 3DP STL datasets. The best-fit algorithm of 3D analysis software was used for teeth and arch measurements, while trueness was analyzed by calculating the average deviation among measured values based on superimposition of Ref and IOS and 3DP data. The differences between Ref and IOS (Ref-IOS), Ref and 3DP (Ref-IOS/3DP), and IOS and 3DP data (IOS-3DP) were compared and analyzed, while accuracy within each of the three main groups was assessed. For statistical analysis, the Kruskal–Wallis, Mann–Whitney U, and repeated measures ANOVA test were used (p < 0.05). The major finding is that the mutual relationships between IOSs and 3D printers vary depending on the combination. However, i500 intraoral scanner and DLP 3D printer was the combination that showed the best trueness value.

Author(s):  
Leonardo Portilha Gomes da Costa ◽  
Stephanie Isabel Díaz Zamalloa ◽  
Fernando Amorim Mendonça Alves ◽  
Renan Spigolon ◽  
Leandro Yukio Mano ◽  
...  

3D printers manufacture objects used in various dental specialties. Objective: This literature review aims to explore different techniques of current 3D printers and their applications in printed materials for dental purposes. Methods: The online PubMed databases were searched aiming to find applications of different 3D printers in the dental area. The keywords searched were 3D printer, 3D printing, additive manufacturing, rapid prototyping, 3D prototyping, dental materials and dentistry. Results: From the search results, we describe Stereolithography (SLA), Digital Light Processing (DLP), Material Jetting (MJ), Fused Deposition Modeling (FDM), Binder Jetting (BJ) and Dust-based printing techniques. Conclusion: 3D printing enables different additive manufacturing techniques to be used in dentistry, providing better workflows and more satisfying clinical results.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 516
Author(s):  
Essam Zaneldin ◽  
Waleed Ahmed ◽  
Aya Mansour ◽  
Amged El Hassan

Construction projects are often challenged by tight budgets and limited time and resources. Contractors are, therefore, looking for ways to become competitive by improving efficiency and using cost-effective materials. Using three-dimensional (3D) printing for shaping materials to produce cost-effective construction elements is becoming a feasible option to make contractors more competitive locally and globally. The process capabilities for 3D printers and related devices have been tightened in recent years with the booming of 3D printing industries and applications. Contractors are attempting to improve production skills to satisfy firm specifications and standards, while attempting to have costs within competitive ranges. The aim of this research is to investigate and test the production process capability (Cp) of 3D printers using fused deposition modeling (FDM) to manufacture 3D printed parts made from plastic waste for use in the construction of buildings with different infill structures and internal designs to reduce cost. This was accomplished by calculating the actual requirement capabilities of the 3D printers under consideration. The production capabilities and requirements of FDM printers are first examined to develop instructions and assumptions to assist in deciphering the characteristics of the 3D printers that will be used. Possible applications in construction are then presented. As an essential outcome of this study, it was noticed that the 3D printed parts made from plastic waste using FDM printers are less expensive than using traditional lightweight non-load bearing concrete hollow masonry blocks, hourdi slab hollow bocks, and concrete face bricks.


OTO Open ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 2473974X2092434
Author(s):  
Yong Gi Jung ◽  
Hanaro Park ◽  
Jiwon Seo

Nasal deformities due to trauma are more challenging to correct with rhinoplasty than nasal deformities of nontraumatic causes. Nasal osteotomy is an essential procedure for bone deviations. Preoperative planning is vital in these cases, but it is challenging to comprehend 3-dimensional (3D) structures of the nasal bone on 2-dimensional facial photographs and computed tomography images. We used a 3D-printing technique to fabricate real-size facial bone models with similar physical properties and texture as the actual bone. Furthermore, we established a precise surgical plan using simulated osteotomy on the 3D-printed model. Fused deposition modeling–type desktop 3D printer with polylactic acid filaments was used. A surgical plan was established using simulated osteotomy in 11 cases, and the actual surgery was performed as planned in 10 cases (90.9%). The 3D-printed model and stimulated osteotomy were useful for precise planning of osteotomy to correct nasal deformities due to trauma.


2021 ◽  
Vol 11 (7) ◽  
pp. 3197
Author(s):  
Jose Luis Saorin ◽  
Manuel Drago Diaz-Alemán ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
Ithaisa Pérez Conesa

The adoption of open-source digital manufacturing technologies in small art workshops may improve their competitiveness. Pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) can be implemented in the procedures of artistic casting. However, models printed by PLA are limited to approximate minimum sizes of 3 cm, and the optimal layer height resolution is 0.1 mm. These sizes and resolutions are not suitable for creating microsculptures used, in many cases, in jewelry. An alternative to solve this limitation, is to use a DMLS (Direct Metal Laser Sintering) 3D printer. However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. This work detailed the design and validation of a DLP (Digital Light Processing) 3D printer, using backlit LCD (Liquid Crystal Display) screens with ultraviolet light. Its development is totally “open source” and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. Most parts can be manufactured in low cost FDM (Fused Deposition Modeling) 3D printers. The result is an affordable, high resolution (0.021 mm), and open-design printer that can be implemented in artistic contexts.


Author(s):  
Ismayuzri Bin Ishak ◽  
Joseph Fisher ◽  
Pierre Larochelle

This article discusses the concept of using an industrial robot arm platform for additive manufacturing. The concept being explored is the integration of existing additive manufacturing process technologies with an industrial robot arm to create a 3D printer with a multi-plane layering capability. The objective is to develop multi-plane toolpath motions that will leverage the increased capability of the robot arm platform compared to conventional gantry-style 3D printers. This approach enables print layering in multiple planes whereas existing conventional 3D printers are restricted to a single toolpath plane (e.g. x-y plane). This integration combines the fused deposition modeling techniques using an extruder head that is typically used in 3D printing and a 6 degree of freedom robot arm. Here, a Motoman SV3X is used as the platform for the robot arm. A higher level controller is used to control the robot and the extruder. To communicate with the robot, MotoCom SDK libraries is used to develop the interfacing software between the higher level controller and the robot arm controller. The integration of these systems enabled multi-plane toolpath motions to be utilized to produce 3D printed parts. A test block has been 3D printed using this integrated system.


2021 ◽  
Author(s):  
Steel N Cardoza ◽  
Lai Yu Leo Tse ◽  
Kira Barton ◽  
Eleni Gourgou

C. elegans nematodes are a well-established model organism in numerous fields of experimental biology. In nature, C. elegans live in a vividly 3-dimensional environment. However, their behavior has been assessed almost exclusively on the open, flat surface of NGM (Nematode Growth Medium) plates, the golden standard for C. elegans culture in the lab. We present two methods to build 3-dimensional behavioral arenas for C. elegans, by casting, and by directly 3D printing NGM hydrogel. The latter is achieved by using a highly customized fused deposition modeling (FDM) 3D-printer, modified to employ NGM hydrogel as ink. The result is the advancement of 3-dimensional complexity of behavioral assays. To demonstrate the potential of our method, we use the 3D-printed arenas to assess C. elegans physical barriers crossing. C. elegans decision to cross physical obstacles is affected by aging, physiological status (i.e., starvation), and prior experience. The 3D-printed structures can be used to spatially confine C. elegans behaviors, i.e., egg laying. We consider these findings a decisive step toward characterizing C. elegans 3-dimensional behavior, an area long overlooked due to technical constrains. We envision our method of 3D-printing NGM arenas as a powerful tool in behavioral neurogenetics, neuroethology, and invertebrate model organisms neurobiology.


2021 ◽  
Vol 10 (11) ◽  
pp. e344101113370
Author(s):  
Fernanda Latorre Melgaço Maia ◽  
Ademir Franco ◽  
Daphne Azambuja Hatschbach de Aquino ◽  
Luciana Butini Oliveira ◽  
José Luiz Cintra Junqueira ◽  
...  

This study aimed to assess the reproducibility of linear measurements performed in dental models produced via intraoral scanning and three-dimensional (3D) printing using digital light processing (DLP) and fused deposition modeling (FDM). A sample of 22 participants was selected for this study. Intraoral scanning was performed in each participant with TRIOS™ (3Shape A/S™, Copenhagen, Denmark) device. The digital models were 3D printed using DLP and FDM techniques. Using a caliper, intraoral linear measurements were performed in situ (on the surface of participant’s teeth) and on the 3D printed models. The measurements taken intraoral and on the models were compared using the Intraclass Correlation Coefficient (ICC). The correlation between measurements taken in situ and on DLP models was poor (<0.4), while between in situ and FDM it ranged from poor to satisfactory (<0.75). Generalized linear model showed that the differences did not reach statistically significant levels (p>0.05). According to Bland-Altman approach, the size of measurements did not bias the outcomes. The intraoral scanning and 3D printing techniques used in this study enabled the reproducibility of linear measurements, however, discrete distortions that might be clinically significant occurred.


Author(s):  
Joseph Dei Rossi ◽  
Ozgur Keles ◽  
Vimal Viswanathan

Abstract Additive manufacturing is a potentially disruptive technology with a rapidly growing market. The recent development of RepRap style 3D printers has made this technology available to the public at a low cost. While these 3D printers are being used for a variety of purposes, many mechanical engineering students use them for prototyping in their projects. The quality of the 3D printed parts has been a concern in such cases. There are many variables within the operation of these printers that can be varied to obtain optimum print quality. This study explores the use of externally induced mechanical vibrations to the nozzle tip as a potential method to improve the quality of 3D printed parts. Induced vibration is expected to decrease the porosity of printed parts and improve the cohesion between print beads, ultimately improving their mechanical properties. The objective is to understand the positional accuracy of the prints with the added vibration and then to determine the optimum level of vibration to achieve best quality prints. For the study, the extruder filament is replaced with a pointed-tip pen that can mark the exact location where the printer delivers the material. A comparison between the locations marked by the pen with and without vibrations shows that the errors induced by the added vibration are not significantly different from those caused by the uncertainties of the printer itself. Further, this study also explores the optimum motor speeds to achieve a uniform distribution of material and determines medium motor speeds that provide maximum amplitude of vibration which are more desirable for a uniform infill.


Author(s):  
Alfonso Costas ◽  
Brittany Newell ◽  
Jose Garcia

Abstract Additive manufacturing is an enabling technology that is rapidly advancing with the development of new printers, materials, and processes. The purpose of this research was to design a part that could function similar to a pneumatic piston-cylinder producing small force outputs between 5 and 10 N. The research presented in this paper looks at various types of 3D printing methods to produce flexible linear bellows actuators to achieve this functionality. In particular, stereolithography, fused deposition modeling, digital light processing, and Polyjet printing were examined to produce a variety of test actuators. A successful flexible part was designed and produced using Polyjet printing, the steady state and dynamic responses of constructed actuators were measured and characterized at various loading conditions. The displacement trends at different load conditions followed a non-linear path, exhibiting highly elastic deformation typical of the flexible resins used in this project.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5240
Author(s):  
Filip Górski ◽  
Radosław Wichniarek ◽  
Wiesław Kuczko ◽  
Magdalena Żukowska

This paper presents the results of experiments conducted on a batch of additively manufactured customized prosthetic sockets for upper limbs, made of thermoplastics and designed automatically on the basis of a 3D-scanned limb of a 3-year-old patient. The aim of this work was to compare sockets made of two different materials—rigid PLA and elastic TPE. Two distinct socket designs with various mounting systems were prepared. To find a reliable set of parameters for cheap and stable manufacturing of usable prostheses using 3D printers, realizing the fused deposition modeling (FDM) process, sets of sockets were manufactured with various process parameters. This paper presents the methodology of the design, the plan of the experiments and the obtained results in terms of process stability, fit and assessment by patient, as well as strength of the obtained sockets and their measured surface roughness. The results are promising, as most of the obtained products fulfil the strength criteria, although not all of them meet the fitting and use comfort criteria. As a result, recommendations of materials and process parameters were determined. These parameters were included in a prototype of the automated design and production system developed by the authors, and prostheses for several other patients were manufactured.


Sign in / Sign up

Export Citation Format

Share Document