scholarly journals Effect of Zn and Mg Content on Crashworthiness of Al-Zn-Mg Alloy Thin-Walled Square Extrusions

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4791
Author(s):  
Hui Guo ◽  
Cheng Wang ◽  
Jin Zhang ◽  
Yunlai Deng

The effects of Zn and Mg content in thin-walled square extrusions of Al-Zn-Mg alloys on its crashworthiness were investigated, and the correlation between the crushing properties, mechanical properties, and microstructures of the profiles were investigated. The results showed that the strength and the compression properties were gradually increased with a decrease in the Zn/Mg ratios (from 12.48 to 4.57). When the Zn/Mg ratio is lower (less than 6.29), an increase in the Mg content simultaneously improves the alloy strength and the compression properties. An increase in Zn content (from 5.07 to 6.77) can improve the strength of the alloy however, it does not affect the compression properties. However, the higher Zn contents (6.77%) would lead to cracking in advance during the compressing, which reduces the compression energy absorption capacities of the product. Therefore, in order to obtain higher strength and excellent compression properties, the Zn/Mg ratio should be reduced. For the upper limit, the Zn content should not be too high (less than 6.77), as this may lead to early cracking and failure. For the lower limit, the Mg content should be higher (more than 0.91) to make sure that the alloy has excellent compression properties and higher strength.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3817
Author(s):  
Yingjie Huang ◽  
Wenke Zha ◽  
Yingying Xue ◽  
Zimu Shi

This study focuses on the uniaxial compressive behaviour of thin-walled Al alloy tubes filled with pyramidal lattice material. The mechanical properties of an empty tube, Al pyramidal lattice material, and pyramidal lattice material-filled tube were investigated. The results show that the pyramidal lattice material-filled tubes are stronger and provide greater energy absorption on account of the interaction between the pyramidal lattice material and the surrounding tube.


2014 ◽  
Vol 794-796 ◽  
pp. 870-875 ◽  
Author(s):  
Min Zha ◽  
Yan Jun Li ◽  
Ragnvald H. Mathiesen ◽  
Christine Baumgart ◽  
Hans J. Roven

Ultrafine-grained (UFG) binary Al-xMg (x=1, 5 and 7 wt %) alloys were processed by equal channel angular pressing (ECAP) at room temperature via route Bccombined with inter-pass annealing. The effects of Mg content, grain size and strain rate on mechanical properties and dynamic strain aging (DSA) behaviour of the Al-Mg alloys upon tensile testing at room temperature were studied. An increase in Mg content from 5 to 7 wt % leads to a pronounced increase in strength and uniform elongation in both the as-homogenized and as-ECAP Al-Mg alloys. Thereby, the Al-7Mg alloy, either prior to or after ECAP processing, possess significantly higher strength and comparable or even higher uniform elongation than the more dilute Al-Mg alloys. However, the as-ECAP Al-Mg alloys exhibit significantly higher strength but little work hardening and hence rather limited uniform elongation. In general, decreasing grain size leads to significant increase in strength while dramatic decrease in ductility. Moreover, DSA serration amplitudes increase with reducing grain size in the micrometer range. However, the UFG Al-Mg alloys exhibit much less DSA effect than the micrometer scaled grain size counterparts, i.e. probably due to the high dislocation densities and special grain boundary features in the UFG materials. Also, the Al-Mg alloys, especially those with a UFG structure, exhibit higher strength and ductility at lower strain rate than at higher strain rate, due mainly to enhanced DSA effect and hence work hardening at a lower strain rate.


Author(s):  
Mohsen Teimouri ◽  
Masoud Asgari

A topology optimization (TO) method is used to develop new and efficient unit cells to be used in additively manufactured porous lattice structures. Two types of unit cells including solid and thin-walled shell-type ones are introduced for generating the desired regular and functionally graded (FG) lattice structures. To evaluate structural stiffness and crushing behavior of the proposed lattice structures, their mechanical properties, and energy absorption parameters have been calculated through implementing finite element (FE) simulations on them. To validate the simulations, two samples were fabricated by a stereolithography (SLA) machine. Besides, the effects of geometrical parameters and optimizing scheme of the unit cells on the mechanical properties of the proposed structures are studied. Consequently, energy absorption parameters have been calculated and compared for both the solid and thin-walled lattice structures to evaluate their ability in energy absorption. It was found in general that for the solid lattice structures, the mechanical properties, and the crushing parameters are directly affected by porosity though in shell-type ones superior mechanical properties could be achieved even for a smaller proportion of material usage.


2020 ◽  
Vol 834 ◽  
pp. 169-176
Author(s):  
Anita Hu ◽  
Xue Yuan Nie ◽  
Henry Hu

In the past, Mg-Zn alloys prepared by a two-step manufacturing process of casting plus extrusion have been demonstrated to be a good candidate for biodegradable applications. But, studies on fabricating of Mg-Zn alloys with a single step process of squeeze casting capable of producing porosity-free Mg alloys, which can reduce the cost, are limited. In the present work, Zinc (Zn) addition varying from 1.0 up to 10.0 wt. % was introduced into liquid magnesium. The alloyed liquid was squeeze cast under an applied pressure of 90 MPa. The results of mechanical testing on the squeeze cast Mg-Zn alloys shows that Zn is an effective additive for enhancing their mechanical properties, specifically, tensile and yield strengths at room temperature, but reducing the elongation. While the Zn addition rises from 1.0 to 10.0 wt.%, the ultimate tensile and yield strengths increases to 181.0 MPa and 105.0 MPa from 140.7 MPa and 39.3 MPa, while the elongation-to-failure (ef) decreases to 3.7% from 6.2%, respectively. The reveal of the as-cast grain structure by an optical microscope (OM) indicates that the high Zn content reduces grain sizes considerably. The microstructures analyzed by a scanning electron microscope (SEM) with the energy dispersive spectroscopy (EDS) show that the secondary MgZn phase forms once Zn is introduced in sufficient amount. The grain refinement and the massive presence of the secondary MgZn phase at the boundaries of the refined grains should be responsible to the enhancement of the strengths and the reduction in the elongation. The developed pressurized casting without employing secondary manufacturing processes such as extrusion or heat treatment exhibits its advantages to enhance the mechanical properties of the Mg alloys with high Zn content over conventional fabrication processes, since high Zn-containing Mg alloys have a long freezing range and tend to form microshrinkage porosity.


Sign in / Sign up

Export Citation Format

Share Document