scholarly journals Molecular and Polymer Ln2M2 (Ln = Eu, Gd, Tb, Dy; M = Zn, Cd) Complexes with Pentafluorobenzoate Anions: The Role of Temperature and Stacking Effects in the Structure; Magnetic and Luminescent Properties

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5689 ◽  
Author(s):  
Maxim A. Shmelev ◽  
Mikhail A. Kiskin ◽  
Julia K. Voronina ◽  
Konstantin A. Babeshkin ◽  
Nikolay N. Efimov ◽  
...  

Varying the temperature of the reaction of [{Cd(pfb)(H2O)4}+n·n(pfb)−], [Ln2(pfb)6(H2O)8]·H2O (Hpfb = pentafluorobenzoic acid), and 1,10-phenanthroline (phen) in MeCN followed by crystallization resulted in the isolation of two type of products: 1D-polymers [LnCd(pfb)5(phen)]n·1.5nMeCN (Ln = Eu (I), Gd (II), Tb (III), Dy (IV)) which were isolated at 25 °C, and molecular compounds [Tb2Cd2(pfb)10(phen)2] (V) formed at 75 °C. The transition from a molecular to a polymer structure becomes possible because of intra- and intermolecular interactions between the aromatic cycles of phen and pfb from neighboring tetranuclear Ln2Cd2 fragments. Replacement of cadmium with zinc in the reaction resulted in molecular compounds Ln2Zn2 [Ln2Zn2(pfb)10(phen)2]·4MeCN (Ln = Eu (VI), Tb (VIII), Dy (IX)) and [Gd2Zn2(pfb)10(H2O)2(phen)2]·4MeCN (VII). A new molecular EuCd complex [Eu2Cd2(pfb)10(phen)4]·4MeCN (X)] was isolated from a mixture of cadmium, zinc, and europium pentafluorobenzoates (Cd:Zn:Ln = 1:1:2). Complexes II-IV, VII and IX exhibit magnetic relaxation at liquid helium temperatures in nonzero magnetic fields. Luminescent studies revealed a bright luminescence of complexes with europium(III) and terbium(III) ions.

1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1720
Author(s):  
Antonios Balassis ◽  
Godfrey Gumbs ◽  
Oleksiy Roslyak

We have investigated the α–T3 model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the α–T3 model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.


2019 ◽  
Vol 15 (S356) ◽  
pp. 247-251
Author(s):  
Biny Sebastian ◽  
Preeti Kharb ◽  
Christopher P. O’ Dea ◽  
Jack F. Gallimore ◽  
Stefi A. Baum ◽  
...  

AbstractThe role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.


2009 ◽  
Vol 501 (3) ◽  
pp. 1131-1137 ◽  
Author(s):  
A. Gascoyne ◽  
R. Jain
Keyword(s):  

Life Sciences ◽  
1994 ◽  
Vol 54 (21) ◽  
pp. 1531-1543 ◽  
Author(s):  
Wolfgang Löscher ◽  
Meike Mevissen

2004 ◽  
Vol 609 (2) ◽  
pp. 776-784 ◽  
Author(s):  
M. Haverkorn ◽  
B. M. Gaensler ◽  
N. M. McClure‐Griffiths ◽  
John M. Dickey ◽  
A. J. Green

Sign in / Sign up

Export Citation Format

Share Document