scholarly journals Superplastic Deformation of Al–Cu Alloys after Grain Refinement by Extrusion Combined with Reversible Torsion

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5803
Author(s):  
Kinga Rodak ◽  
Dariusz Kuc ◽  
Tomasz Mikuszewski

The binary as-cast Al–Cu alloys Al-5%Cu, Al-25%Cu, and Al-33%Cu (in wt %), composed of the intermetallic θ-Al2Cu and α-Al phases, were prepared from pure components and were subsequently severely plastically deformed by extrusion combined with reversible torsion (KoBo) to refinement of α-Al and Al2Cu phases. The extrusion combined with reversible torsion was carried out using extrusion coefficients of λ = 30 and λ = 98. KoBo applied to the Al–Cu alloys with different initial structures (differences in fraction and phase size) allowed us to obtain for alloys (Al-25%Cu and Al-33%Cu), with higher value of intermetallic phase, large elongations in the range of 830–1100% after tensile tests at the temperature of 400 °C with the strain rate of 10−4 s−1. The value of elongation depended on extrusion coefficient and increase, with λ increasing as a result of α-Al and Al2Cu phase refinement to about 200–400 nm. Deformation at the temperature of 300 °C, independently of the extrusion coefficient (λ), did not ensure superplastic properties of the analyzed alloys. A microstructural study showed that the mechanism of grain boundary sliding was responsible for superplastic deformation.

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 991
Author(s):  
Junzhou Yang ◽  
Jianjun Wu

An investigation of flow behavior and the deformation mechanism for Ti-6Al-4V alloy during the superplastic deformation process is presented in this paper. Constant strain rate tensile tests were performed at 890–950 °C and strain rates of 10−2, 10−3, and 10−4/s. Then, surface observation by Optical Microscope (OM), Scanning Electron Microscopy (SEM), and Electron Back-scattered Diffraction (EBSD) was applied to obtain the microstructure mechanism. With pole figure maps (PF) for α-phase, obvious texture gradually changed in the main deformation direction. For the titanium alloy, the evolution of texture in deformed samples was attributed to grain rotation (GR). Significant grain rearrangement occurred between grains after deformation. A complete grain rotation accommodated grain boundary sliding (GBS) deformation mechanism is proposed, which can explain texture evolution without grain deformation.


2007 ◽  
Vol 551-552 ◽  
pp. 527-532 ◽  
Author(s):  
Guo Qing Chen ◽  
Shao Hua Sui ◽  
X.D. Wang ◽  
Wen Bo Han

In this paper constrained extrusion of the zirconia dispersed alumina nanocomposite under superplastic conditions was conducted. The mechanical properties of deformed material were studied and its results were compared with those of the initial materials. The microstructure evolution during superplastic deformation was also analyzed. The results demonstrated that after superplastic extrusion the flexural strength, relative density, Vickers hardness as well as fracture toughness of the material increased noticeably. The flexural strength of the deformed composite even retained at a high value of 310MPa at 800°C. The fracture toughness of the material increased from 6.92 MPa·m1/2 to 8.87 MPa·m1/2 after deformation. After superplastic extrusion due to grain boundary sliding and the compressive stress state, the internal porosities in as-sintered materials were eliminated. During extrusion with grain coarsening the effect of t-ZrO2 to m-ZrO2 transformation toughening increased because more zirconia grains reached the critical dimension. Although grain coarsening may cause the decrease of the fracture toughness in some extent, the phase transformation toughening and strengthening dominated. As a result, the mechanical properties of the deformed material were improved.


Author(s):  
R. Boissière ◽  
J. J. Blandin ◽  
L. Salvo

Superplastic forming (SPF) of metallic alloys allows the production of components with particularly complex shapes since in this regime, due to the predominance of grain boundary sliding (GBS), the material exhibits a high plastic stability. However, in many light alloys (i.e., Al or Mg alloys), superplastic deformation induces damage leading to premature fracture. Despite extensive work in the past, the mechanisms of damage induced by superplastic deformation remain under debate. In particular, due to the important contribution of GBS, voids with very irregular shapes frequently develop, resulting in a difficulty to obtain reliable experimental data from conventional quantitative metallography. It is the reason why the use of X-ray microtomography, providing 3D images of material bulk, is a particularly fruitful technique to investigate damage processes in superplastic materials. Thanks to this technique, damage development during superplastic deformation of Al and Mg alloys is investigated and the three main steps of damage development (nucleation, growth, and coalescence) are discussed.


2012 ◽  
Vol 186 ◽  
pp. 315-318 ◽  
Author(s):  
Małgorzata Wierzbińska ◽  
Jan Sieniawski

The influence of long term annealing on microstructure of Al-Cu4-Ni2-Mg aluminum alloy was investigated. The castings were subjected to T6 heat treatment followed by annealing at 523 K and 623 K for 100, 150, 300, 500 and 750 hours. The soaking time and temperature was adjusted by corresponding to real service conditions of the elements of an aircraft and motor engines from investigated alloys. Microstructural examination of the alloy was carried out with optical microscope, as well as scaning and transmissiom electron microscopes. The result of microscopic analysis showed that applied heat treatment caused an increasing in the particles of hardening (θ’-Al2Cu) phase size. The significant growth of the length and changing the value of shape factor of hardening phase precipitations was observed. The phenomenon of the increase in size and change in shape of precipitations of hardening phases continually change with the prolonged holding time at high temperature. The microstructure degradation is connected to a decrease of mechanical properties of alloy, confirmed by the result of tensile tests.


1999 ◽  
Vol 601 ◽  
Author(s):  
S. Hanada ◽  
W. Fang

AbstractMicrostructures of a binary Nb-15.8at%Al alloy ingot were controlled by isothermal forging and heat treatment to produce equiaxed, fine grains of Nb3Al and Nb solid solution (Nb33). Nb3Al/Nb33 two phase alloy (in-situ composite) is found to exhibit superplasticity especially when one of the constituent phases, Nb33, is supersaturated. During superplastic deformation Nb33 transforms to Nb3Al, and Al content in Nb33 decreases. After superplastic deformation the microstructure consisting of equiaxed grains is left unchanged, although a slight grain growth is observed. It is suggested that stress induced by grain boundary sliding is effectively accommodated through dislocation glide and climb in the soft Nb33


2011 ◽  
Vol 284-286 ◽  
pp. 1635-1638
Author(s):  
Jun Qiao ◽  
Yu Wang ◽  
Guo Dong Shi ◽  
Bao Xin Nie

Tensile behaviors of extruded and rolled AZ80 Mg alloy were investigated with elongation-to-failure tensile tests at constant temperatures of 300 °C, 350 °C, 400 °C, and 450 °C, and constant strain rates of 10-2s-1and 10-3s-1. Experimental data show that the material exhibits tensile ductilities of over 100% at 400 °C and 450 °C, featured by long steady state deformation. Microstructure studies show that annealed coarse grains were remained in the gauge region during the tensile tests, and the enhanced tensile ductilities resulted from dislocation creep, other than dynamic recrystallization or grain boundary sliding. Cavity evolution and recrystallized coarse grains near fracture end caused premature failure of the material.


2012 ◽  
Vol 735 ◽  
pp. 22-25
Author(s):  
Carl Boehlert ◽  
Zhe Chen ◽  
Iván Gutierrez-Urrutia ◽  
Javier Llorca ◽  
María Teresa Pérez-Prado

Highly-textured, rolled AZ31 sheet material shows a significant drop in the plastic anisotropy (r-value; r=ew/et) in tension between 25°C and 200°C. This behavior was initially explained as a result of the increased activity of non-basal slip with increased temperature. Other authors suggested, however, that the mechanism responsible for this phenomenon was the activation of grain boundary sliding (GBS). Here, in-situ tensile tests have been carried out in an SEM at various temperatures in order to obtain further evidence of the role of GBS during moderate to high temperature deformation of Mg alloys, which remains highly controversial.


Sign in / Sign up

Export Citation Format

Share Document