scholarly journals Adsorptive and Electrochemical Properties of Carbon Nanotubes, Activated Carbon, and Graphene Oxide with Relatively Similar Specific Surface Area

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 496
Author(s):  
Krzysztof Kuśmierek ◽  
Andrzej Świątkowski ◽  
Katarzyna Skrzypczyńska ◽  
Lidia Dąbek

Three carbon materials with a highly diversified structure and at the same time much less different porosity were selected for the study: single-walled carbon nanotubes, heat-treated activated carbon, and reduced graphene oxide. These materials were used for the adsorption of 2,4-D herbicide from aqueous solutions and in its electroanalytical determination. Both the detection of this type of contamination and its removal from the water are important environmental issues. It is important to identify which properties of carbon materials play a significant role. The specific surface area is the major factor. On the other hand, the presence of oxygen bound to the carbon surface in the case of contact with an organochlorine compound had a negative effect. The observed regularities concerned both adsorption and electroanalysis with the use of the carbon materials applied.

2020 ◽  
Vol 49 (16) ◽  
pp. 5006-5014 ◽  
Author(s):  
Yuanyuan Li ◽  
Nan Chen ◽  
Zengling Li ◽  
Huibo Shao ◽  
Liangti Qu

Carbon materials are widely used as capacitive deionization (CDI) electrodes due to their high specific surface area (SSA), superior conductivity, and better stability, including activated carbon, carbon aerogels, carbon nanotubes and graphene.


2015 ◽  
Vol 749 ◽  
pp. 17-21 ◽  
Author(s):  
Joanna Sreńscek Nazzal ◽  
Karolina Glonek ◽  
Jacek Młodzik ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
...  

Microporous carbons prepared from commercial activated carbon WG12 by KOH and/or ZnCl2 treatment were examined as adsorbents for CO2 capture. The micropore volume and specific surface area of the resulting carbons varied from 0.52 cm3/g (1374 m2/g) to 0.70 cm3/g (1800 m2/g), respectively. The obtained microporous carbon materials showed high CO2 adsorption capacities at 40 bar pressure reaching 16.4 mmol/g.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1111 ◽  
Author(s):  
Ling-Yan Meng ◽  
Ming-Guo Ma ◽  
Xing-Xiang Ji

The purpose of this article was to explore the influences of synthetic methods on the lignin-based carbon materials. In this paper, the lignin-based activated carbon materials were comparatively researched in ZnCl2 solution using various methods, including the microwave-assisted method, ultrasound method, and UV irradiation method, respectively. Scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA) were used to characterize the as-prepared samples. The effects of the synthetic parameters including the types of lignin, activated solution concentration, types of activated solution, and synthetic methods on the morphologies, thermal stability, and specific surface area of samples were comparatively investigated in detail. The specific surface area of lignin-based activated carbon increased to 473.8, 765.3, and 211.2 m2∙g−1 using the microwave-assisted method, ultrasound method, and UV irradiation method, respectively, compared with that of the control (113.4 m2∙g−1). The lignin-based carbon materials displayed the enhanced absorptive capacity, compared with that of the control. These novel synthetic methods reported here maybe have a guiding significance for the synthesis of carbon materials using the lignin as precursors.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hoang Thu Ha ◽  
Pham Tuan Phong ◽  
Tran Dinh Minh

This work reveals the As(V) adsorption behaviors onto iron oxide (Fe3O4) nanoparticles modified activated carbon (AC), originally developed from biochar (BC), as a green adsorbent denoted by FAC. Since FAC has abundant surface functional groups and a desired porous structure that is favorable for the removal of As(V) in contaminated water, FAC has greatly enhanced the As(V) adsorption capacity of the original BC. Various methods were employed to characterize the FAC characteristics and adsorption mechanism, including pHpzc determination, BET specific surface area, elemental analysis (EA), and scanning electron microscopy (SEM). Results show that the AC surface was successfully modified by iron oxide nanoparticles, enhancing the porosity and specific surface area of original adsorbent. Batch adsorption tests indicated a well-fitted Langmuir model and pseudo-second-order model for As(V) adsorption. Additionally, the highest adsorption capacity (Qmax = 32.57 mg/g) by FAC was higher than previously reported literature reviews. Until now, no article was conducted to research the effect of carbon surface chemistry and texture on As removal from waters. It is required to obtain a rational view of optimal conditions to remove As from contaminated water.


2019 ◽  
Vol 19 (7) ◽  
pp. 2054-2060
Author(s):  
Wang Li ◽  
Hu Yusha ◽  
Lu Yifei ◽  
Fu Jiangtao ◽  
Hu Ning ◽  
...  

Abstract Modified activated carbon/carbon nanotubes (AC*/CNT*) composite electrode was used as the electrode in a capacitive deionization (CDI) process for desalination in this study. The morphology and electrochemical characteristics of the modified electrode were discussed, and the results showed that after modification, the specific surface area of AC* reached 672.48 m2/g, increased by 29.43%; while the specific surface area of CNT* was 117.39 m2/g, reduced by 9.94% due to the strong oxidation of the mixed acid, the pore volume of CNT* increased by 48.28%. The electrode regeneration test proved that the electrode had good cycling stability. The pseudo-first-order kinetic model could better describe the adsorption rate of the electrodes for ions and the desalination ratio of the AC*/CNT* electrode reached 7.11 mg/g; the Langmuir model could well describe the adsorption mechanism of capacitive deionization, and indicated that the adsorption process of CDI was near to single ion layer adsorption; the change trend of electric mobility with migration time could be well fitted by exponential equations. This study explored a novel composite electrode coating, and initially explored the behavioral characteristics and trends of CDI technology.


2006 ◽  
Vol 22 (01) ◽  
pp. 43-47
Author(s):  
JIANG Qi ◽  
◽  
LU Xiao-ying ◽  
ZHAO Yong ◽  
ZHU Xiao-tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document