scholarly journals Preparation of Lignin-Based Carbon Materials and Its Application as a Sorbent

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1111 ◽  
Author(s):  
Ling-Yan Meng ◽  
Ming-Guo Ma ◽  
Xing-Xiang Ji

The purpose of this article was to explore the influences of synthetic methods on the lignin-based carbon materials. In this paper, the lignin-based activated carbon materials were comparatively researched in ZnCl2 solution using various methods, including the microwave-assisted method, ultrasound method, and UV irradiation method, respectively. Scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA) were used to characterize the as-prepared samples. The effects of the synthetic parameters including the types of lignin, activated solution concentration, types of activated solution, and synthetic methods on the morphologies, thermal stability, and specific surface area of samples were comparatively investigated in detail. The specific surface area of lignin-based activated carbon increased to 473.8, 765.3, and 211.2 m2∙g−1 using the microwave-assisted method, ultrasound method, and UV irradiation method, respectively, compared with that of the control (113.4 m2∙g−1). The lignin-based carbon materials displayed the enhanced absorptive capacity, compared with that of the control. These novel synthetic methods reported here maybe have a guiding significance for the synthesis of carbon materials using the lignin as precursors.

2015 ◽  
Vol 749 ◽  
pp. 17-21 ◽  
Author(s):  
Joanna Sreńscek Nazzal ◽  
Karolina Glonek ◽  
Jacek Młodzik ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
...  

Microporous carbons prepared from commercial activated carbon WG12 by KOH and/or ZnCl2 treatment were examined as adsorbents for CO2 capture. The micropore volume and specific surface area of the resulting carbons varied from 0.52 cm3/g (1374 m2/g) to 0.70 cm3/g (1800 m2/g), respectively. The obtained microporous carbon materials showed high CO2 adsorption capacities at 40 bar pressure reaching 16.4 mmol/g.


2020 ◽  
Vol 49 (16) ◽  
pp. 5006-5014 ◽  
Author(s):  
Yuanyuan Li ◽  
Nan Chen ◽  
Zengling Li ◽  
Huibo Shao ◽  
Liangti Qu

Carbon materials are widely used as capacitive deionization (CDI) electrodes due to their high specific surface area (SSA), superior conductivity, and better stability, including activated carbon, carbon aerogels, carbon nanotubes and graphene.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 496
Author(s):  
Krzysztof Kuśmierek ◽  
Andrzej Świątkowski ◽  
Katarzyna Skrzypczyńska ◽  
Lidia Dąbek

Three carbon materials with a highly diversified structure and at the same time much less different porosity were selected for the study: single-walled carbon nanotubes, heat-treated activated carbon, and reduced graphene oxide. These materials were used for the adsorption of 2,4-D herbicide from aqueous solutions and in its electroanalytical determination. Both the detection of this type of contamination and its removal from the water are important environmental issues. It is important to identify which properties of carbon materials play a significant role. The specific surface area is the major factor. On the other hand, the presence of oxygen bound to the carbon surface in the case of contact with an organochlorine compound had a negative effect. The observed regularities concerned both adsorption and electroanalysis with the use of the carbon materials applied.


RSC Advances ◽  
2021 ◽  
Vol 11 (52) ◽  
pp. 32955-32964
Author(s):  
Fangwai Wang ◽  
Ruixue Xue ◽  
Yujie Ma ◽  
Yizhao Ge ◽  
Zijun Wang ◽  
...  

In this paper, a simple method was used to rapidly prepare MOF-808 with a large specific surface area and high stability.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


1996 ◽  
Vol 454 ◽  
Author(s):  
Weiming Lu ◽  
D. D. L. Chung

ABSTRACTActivated carbon filaments of diameter ∼0.1 μm, main pore size (BJH) 55 Å, specific surface area 1310 m2/g and yield 36.2% were obtained by activating carbon filaments of diameter ∼ 0.1 urn in C02 + N2 (1:1) at 970°C for 80 min. Prior to this activation, the filaments were surface oxidized by exposure to ozone.


Sign in / Sign up

Export Citation Format

Share Document