scholarly journals First-Principles Studies for Electronic Structure and Optical Properties of p-Type Calcium Doped α-Ga2O3

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 604
Author(s):  
Abhay Kumar Mondal ◽  
Mohd Ambri Mohamed ◽  
Loh Kean Ping ◽  
Mohamad Fariz Mohamad Taib ◽  
Mohd Hazrie Samat ◽  
...  

Gallium oxide (Ga2O3) is a promising wide-band-gap semiconductor material for UV optical detectors and high-power transistor applications. The fabrication of p-type Ga2O3 is a key problem that hinders its potential for realistic power applications. In this paper, pure α-Ga2O3 and Ca-doped α-Ga2O3 band structure, the density of states, charge density distribution, and optical properties were determined by a first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. It was found that calcium (Ca) doping decreases the bandgap by introducing deep acceptor energy levels as the intermediate band above the valence band maximum. This intermediate valence band mainly consists of Ca 3p and O 2p orbitals and is adequately high in energy to provide an opportunity for p-type conductivity. Moreover, Ca doping enhances the absorptivity and reflectivity become low in the visible region. Aside, transparency decreases compared to the pure material. The optical properties were studied and clarified by electrons-photons interband transitions along with the complex dielectric function’s imaginary function.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 978
Author(s):  
Henry Igwebuike Eya ◽  
Esidor Ntsoenzok ◽  
Nelson Y. Dzade

Transition metal perovskite chalcogenides are attractive solar absorber materials for renewable energy applications. Herein, we present the first–principles screened hybrid density functional theory analyses of the structural, elastic, electronic and optical properties of the two structure modifications of strontium zirconium sulfide (needle–like α–SrZrS3 and distorted β–SrZrS3 phases). Through the analysis of the predicted electronic structures, we show that both α– and β–SrZrS3 materials are direct band gaps absorbers, with calculated band gaps of 1.38, and 1.95 eV, respectively, in close agreement with estimates from diffuse–reflectance measurements. A strong light absorption in the visible region is predicted for the α– and β–SrZrS3, as reflected in their high optical absorbance (in the order of 105 cm−1), with the β–SrZrS3 phase showing stronger absorption than the α–SrZrS3 phase. We also report the first theoretical prediction of effective masses of photo-generated charge carriers in α– and β–SrZrS3 materials. Predicted small effective masses of holes and electrons at the valence, and conduction bands, respectively, point to high mobility (high conductivity) and low recombination rate of photo-generated charge carriers in α– and β–SrZrS3 materials, which are necessary for efficient photovoltaic conversion.


2021 ◽  
Vol 22 (1) ◽  
pp. 117-122
Author(s):  
H. Ilchuk ◽  
M. Solovyov ◽  
I. Lopatynskyi ◽  
F. Honchar ◽  
F. Tsyupko

The results of investigating of the electron band energy structure and optical properties of A4BX6 (Tl4HgI6 and Tl4CdI6) group crystals are presented. The energy band structures of Tl4HgI6 and Tl4CdI6 crystals are calculated from the first principles within generalized gradient approximation (GGA). The band structure and reflection index were calculated using a pseudopotential method in the framework of density functional theory. Optical absorption edge in Tl4HgI6 and Tl4CdI6 is formed by direct optical transitions. The spectral dependence of the reflection index was calculated on the basis of the energy band results with using the Kramers–Kronig method. The spectra show pronounced anisotropy in E||a(b) and E||c polarizations. It was found the anomalous by large values of the birefringence (Δn > 0.18 for Tl4HgI6 and Δn > 0.03 for Tl4CdI6) in the visible and near infrared region.


2020 ◽  
Vol 8 (1) ◽  
pp. 23-28
Author(s):  
Aawzad A. Abdulkareem ◽  
Sarkawt A. Sami ◽  
Badal H. Elias

Plane waves with norm conserving pseudopotentials (PW-PP) method in conjunction with density functional theory (DFT) frame work have been used to investigate structural, electronic and optical properties of lead-halide cubic perovskite CsPbX3 (X=Br, Cl and I). The generalized gradient approximation (GGA), specifically Perdew-Burke-Ernzerhof (PBE) flavor, has been chosen to treat the exchange correlation term of Kohn-Sham equation. Structural parameters are comparable with other theoretical and experimental studies. In spite of good agreement of our band gap values  with other theoretical works, however, they were not comparable when compared to the experimental  values due to the well-known problem of Eg value underestimation of DFT. To update the  value, we have used GW method as a self-consistent quasiparticle method on energies and wave functions and indeed they have been improved. Optical properties have been calculated using density functional perturbation theory (DFPT). Our results show that CsPbX3 (X=Br, Cl, I) has maximum response to the electromagnetic spectrum at low energies (visible region) but minimum response at high energies.


2012 ◽  
Vol 26 (32) ◽  
pp. 1250200 ◽  
Author(s):  
Y. C. DING ◽  
A. P. XIANG ◽  
X. H. ZHU ◽  
J. LUO ◽  
X. F. HU

First principles study of the structural, electronic and optical properties of Al -doped γ- Ge 3 N 4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ- Ge 3 N 4 doped with Al has a much higher static dielectric constant than undoped γ- Ge 3 N 4, implying its potential applications in electronics and optics.


2014 ◽  
Vol 28 (31) ◽  
pp. 1450243
Author(s):  
R. Taghavi Mendi ◽  
S. M. Elahi ◽  
M. R. Abolhassani

In this paper, some optical properties of Zn 1-x V x O (0 ≤ x ≤ 0.5) such as real and imaginary part of dielectric function, energy loss function, plasmon energies and refractive index are investigated by first principles calculations. The calculations were performed in density functional theory (DFT) framework using full potential linear augmented plane wave (FP-LAPW) and generalized gradient approximation (GGA). Analysis of dielectric function shows that by substituting V instead of Zn in Zn 1-x V x O , static dielectric function, absorption and anisotropy at low energies are increased. The investigations show that V doping in ZnO affects plasmon energies. The plasmon energies have been compared with free electron model. The calculated plasmon energy for pure ZnO is nearly close to other works. The refractive index at low energies is increased significantly, so that V -doped ZnO can be used as a high refractive material.


Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
Li-Na Bai ◽  
Jian-She Lian ◽  
Wei-Tao Zheng ◽  
Qing Jiang

AbstractVarious electronic and optical properties of Zn1−x CaxO ternary alloys of wurtzite structure are calculated using a first-principles approach based on the framework of the generalized gradient approximation to density-functional theory. In particular, on-site Coulomb interactions are introduced, which can reasonably well predict the electronic properties and band gaps of the Zn1−x CaxO (0≤x≤0.25) system. The imaginary part of the calculated dielectric function indicates that the optical transition between O 2p states in the valence band and Zn 4s states in the conduction band shifts to the high-energy range as the Ca concentration increases. The calculated band gap shows a significant increase with increasing Ca concentration. Therefore, Zn1−x CaxO ternary alloys may be a potential candidate alloy for optoelectronic materials, and especially for light-emitters and detectors.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650139
Author(s):  
Kai Liang ◽  
Hui Zhao

First-principles calculations of ternary Sr2ZnN2 compound using density-functional theory (DFT) method within the generalized gradient approximation (GGA) has been performed. Based on the optimized structural parameter, the electronic properties and optical properties have been researched. The calculated lattice constants are in agreement with the experimental and theoretical results. The electronic structure have been investigated throughout the calculated band structure and density of states (DOS). It shows that this compound belongs to the semiconductors with a band gap of about 0.775[Formula: see text]eV. Furthermore, in order to clarify the optical transition of this material, the optical properties such as dielectric function, absorption coefficient, reflectivity, refractive index and energy-loss function at different pressures of 0, 10 and 20[Formula: see text]GPa in the energy range 0–20[Formula: see text]eV were performed and discussed. It shows that Sr2ZnN2 is a strong anisotropy material and the imaginary part of dielectric function shifts to higher energy region as the pressure increases. The square of calculated static refractive index is equal to static dielectric function, which corresponds to the theory formula. In conclusion, pressure is a effective method to change the electronic structure and optical properties.


2014 ◽  
Vol 13 (08) ◽  
pp. 1450070 ◽  
Author(s):  
Xingxiang Ruan ◽  
Fuchun Zhang ◽  
Weihu Zhang

The In -doped GaN is investigated by first-principles calculations of plane wave ultra-soft pseudo-potential method based on the density functional theory (DFT). The band structure, electronic structure, density of states and optical properties are investigated. The results indicate that the band-gap becomes narrower and the absorption edge of optical properties is red-shifted with the increase in In -doped concentration. Meanwhile, the visible region has strong absorption properties, and the significant absorption peaks are observed near 3.0 eV and 6.1 eV. The other peaks correspond to the wavelength of absorption spectra from the ultraviolet portion extending to the infrared portion, which almost covers the entire solar spectrum. The studied results show that In -doped GaN can be applied as solar cell and transparent conductivity material.


2013 ◽  
Vol 842 ◽  
pp. 205-209
Author(s):  
Yu Qin Fan ◽  
Xue Yao

The Half-metallic and optical properties of wurtzite Cu and Cr codoped AlN were investigated by first-principles calculation based on density functional theory (DFT) using the generalized gradient approximation (GGA) for the exchange-correlation potential. It is shown that the Cu and Cr codoped AlN is a typical half-metallic material at the equilibrium lattice constant. As a p-type semiconductor, there exhibits higher hole concentration in Cu and Cr codoped AlN comparing with Cu doped AlN or Cr doped AlN, which indicates a significant increase in TC. This result suggests that it is possible to achieve high TC materials by Cu and Cr codoped AlN. In addition, the band gap of Cu and Cr codoped AlN is reduced and the absorption ability to ultraviolet light is expanded obviously, a noticeable red-shift of the absorption spectra edge is observed in the Cu and Cr codoped system and two new absorption peaks appear at around 28 nm and 225 nm.


2009 ◽  
Vol 20 (07) ◽  
pp. 1093-1101 ◽  
Author(s):  
YANLING LI ◽  
ZHI ZENG

The high-pressure behavior of perovskite ( MgSiO 3) is studied based on density functional simulations within generalized gradient approximation (GGA). All calculations are performed by using the linear augmented plane waves plus local orbital (LAPW+lo) method to solve the scalar-relativistic Kohn-Sham equations. The static calculations predict a perovskite (pnma phase) — post-perovskite (Cmcm phase) transition occurring at 86 gigapascals (GPa). The similar bulk modulus values, differing only 3 GPa, are given by using three kinds of equation of states. The electronic structure and optical properties of MgSiO 3 at phase transition pressure are also discussed.


Sign in / Sign up

Export Citation Format

Share Document