scholarly journals Between-the-Holes Cryogenic Cooling of the Tool in Hole-Making of Ti-6Al-4V and CFRP

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 795 ◽  
Author(s):  
Asif Iqbal ◽  
Guolong Zhao ◽  
Juliana Zaini ◽  
Munish Kumar Gupta ◽  
Muhammad Jamil ◽  
...  

Lightweight materials are finding plentiful applications in various engineering sectors due to their high strength-to-weight ratios. Hole-making is an inevitable requirement for their structural applications, which is often marred by thermal damages of the drill causing unacceptable shortening of tool life. Efficient cooling of the tool is a prime requirement for enhancing the process viability. The current work presents a novel technique of cooling only the twist drill between drilling of holes with no effect of the applied cryogenic coolant transferred to the work material. The technique is applied in the drilling of two commonly used high-strength lightweight materials: carbon fibers reinforced polymer (CFRP) and an alloy of titanium (Ti-6Al-4V). The efficacy of the cooling approach is compared with those of conventionally applied continuous cryogenic cooling and no-cooling. The effectiveness is quantified in terms of tool wear, thrust force, hole quality, specific cutting energy, productivity, and consumption of the cryogenic fluid. The experimental work leads to a finding that between-the-holes cryogenic cooling possesses a rich potential in curbing tool wear, reducing thrust force and specific energy consumption, and improving hole quality in drilling of CFRP. Regarding the titanium alloy, it yields a much better surface finish and lesser consumption of specific cutting energy.

Author(s):  
Mohd Asyraf Mahboob Ali ◽  
Azwan Iskandar Azmi ◽  
Mohd Zahiruddin Mohd Zain ◽  
Muhamad Nasir Murad ◽  
Ahmad Nabil Mohd Khalil ◽  
...  

Author(s):  
S. D. Supekar ◽  
B. A. Gozen ◽  
B. Bediz ◽  
O. B. Ozdoganlar ◽  
S. J. Skerlos

This article investigates the feasibility of using supercritical carbon dioxide based metalworking fluids (scCO2 metalworking fluids (MWFs)) to improve micromachinability of metals. Specifically, sets of channels were fabricated using micromilling on 304 stainless steel and 101 copper under varying machining conditions with and without scCO2 MWF. Burr formation, average specific cutting energy, surface roughness, and tool wear were analyzed and compared. Compared to dry machining, use of scCO2 MWF reduced burr formation in both materials, reduced surface roughness by up to 69% in 304 stainless steel and up to 33% in 101 copper, tool wear by up to 20% in 101 copper, and specific cutting energy by up to 87% in 304 stainless steel and up to 40% in 101 copper. The results demonstrate an improvement in micromachinability of the materials under consideration and motivate future investigations of scCO2 MWF-assisted micromachining to reveal underlying mechanisms of functionality, as well as to directly compare the performance of scCO2 MWF with alternative MWFs appropriate for micromachining.


2021 ◽  
Author(s):  
Linghao Kong ◽  
Dong Gao ◽  
Yong Lu ◽  
Pengfei Zhang

Abstract As the most promising CFRP hole making method, orbital drilling is widely concerned. This paper aims to understand the influence of the cutting parameters, tool diameters and ratio between milling and drilling (Rm&d) on thrust force, cutting temperature, tool wear and machining quality in CFRP orbital drilling. The effects of cutting parameters on thrust force and cutting temperature were studied by orthogonal experiments, and experiments were performed to investigate the variations of tool diameters, ratio between drilling and milling on thrust force, cutting temperature, tool wear and machining quality. The experimental results show that the tangential feed rate has no apparent effects on thrust force, but it appreciably impacts on the cutting temperature. The selection of tool diameter and the Rm&d has specific influence on tool wear, machining quality and cutting temperature. The result is helpful for selecting cutting parameters and tool diameters for high quality holes machining in CFRP orbital drilling.


2019 ◽  
Vol 10 (2) ◽  
pp. 561-573 ◽  
Author(s):  
Muhammad Ali Khan ◽  
Syed Husain Imran Jaffery ◽  
Mushtaq Khan ◽  
Muhammad Younas ◽  
Shahid Ikramullah Butt ◽  
...  

Abstract. Productivity and economy are key elements of any sustainable manufacturing system. While productivity is associated to quantity and quality, economy focuses on energy efficient processes achieving an overall high output to input ratio. Machining of hard-to-cut materials has always posed a challenge due to increased tool wear and energy loss. Cryogenics have emerged as an effective means to improve sustainability in the recent past. In the present research the use of cooling conditions has been investigated as an input variable to analyze its effect on tool wear, specific cutting energy and surface roughness in combination with other input machining parameters of feed rate, cutting speed and depth of cut. Experimental design was based on Taguchi design of experiment. Analysis of Variance (ANOVA) was carried out to ascertain the contribution ratio of each input. Results showed the positive effect of coolant usage, particularly cryogenic, on process responses. Tool wear was improved by 33 % whereas specific cutting energy and surface roughness were improved by 10 % and 9 % respectively by adapting the optimum machining conditions.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5697
Author(s):  
Tarek Elgnemi ◽  
Victor Songmene ◽  
Jules Kouam ◽  
Martin B.G. Jun ◽  
Agnes Marie Samuel

This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obtaining quality parts with acceptable tool performance and limited dust emission. For achieving this, the cutting temperature was examined using analytical and empirical models, and systematic cutting experiments were conducted to assess the reliability of the theoretical predictions. A full factorial design was used for the experimental design. The experiments were conducted on a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2, 4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects the cutting temperature and fine particle emission while cutting force, specific cutting energy, and tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and the model is validated. The results obtained may be used to better understand specific phenomena associated with the milling of CFRPs and provide the means to select effective milling parameters to improve the technology and economics of the process.


Author(s):  
Chinmaya R. Dandekar ◽  
Yung C. Shin

Metal matrix composites, due to their excellent properties of high specific strength, fracture resistance, and corrosion resistance, are highly sought after over their nonferrous alloys, but these materials also present difficulty in machining. Excessive tool wear and high tooling costs of diamond tools make the cost associated with machining of these composites very high. This paper is concerned with the machining of high volume fraction long-fiber metal matrix composites (MMCs), which has seldom been studied. The composite material considered for this study is an Al–2% Cu aluminum matrix composite reinforced with 62% by volume fraction alumina fibers (Al–2% Cu/Al2O3). Laser-assisted machining (LAM) is utilized to improve the tool life and the material removal rate while minimizing the subsurface damage. The effectiveness of the laser-assisted machining process is studied by measuring the cutting forces, specific cutting energy, surface roughness, subsurface damage, and tool wear under various material removal temperatures. A multiphase finite element model is developed in ABAQUS/STANDARD to assist in the selection of cutting parameters such as tool rake angle, cutting speed, and material removal temperature. The multiphase model is also successful in predicting the damage depth on machining. The optimum material removal temperature is established as 300°C at a cutting speed of 30 m/min. LAM provides a 65% reduction in the surface roughness, specific cutting energy, tool wear rate, and minimum subsurface damage over conventional machining using the same cutting conditions.


Author(s):  
Chinmaya R. Dandekar ◽  
Yung C. Shin

Metal matrix composites due to their excellent properties of high specific strength, fracture resistance and corrosion resistance are highly sought after over their non-ferrous alloys, but these materials also present difficulty in machining. Excessive tool wear and high tooling costs of diamond tools makes the cost associated with machining of these composites very high. This paper is concerned with machining of high volume fraction long-fiber MMC’s, which has seldom been studied. The composite material considered for this study is an Al-2%Cu aluminum matrix composite reinforced with 62% by volume fraction alumina fibers (Al-2%Cu/Al2O3). Laser-machining is utilized to improve the tool life and the material removal rate while minimizing the sub-surface damage. The effectiveness of the laser-assisted machining process is studied by measuring the cutting forces, specific cutting energy, surface roughness, sub-surface damage and tool wear under various material removal temperatures. A multi-phase finite element model is developed in ABAQUS/Standard to identify and assist in selection of cutting parameters such as; tool rake angle, cutting speed and material removal temperature. The multi-phase model is also successful in predicting the damage depth on machining. The optimum material removal temperature is established as 300°C at a cutting speed of 30 m/min. LAM provides a 65% reduction in the surface roughness, specific cutting energy, the tool wear rate and minimum sub-surface damage over conventional machining using the same cutting conditions.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1181
Author(s):  
Dinh Son Tran ◽  
Victor Songmene ◽  
Anh Dung Ngo ◽  
Jules Kouam ◽  
Arturo Rodriguez-Uribe ◽  
...  

The machinability of composite materials depends on reinforcements, matrix properties, cutting parameters, and on the cutting tool used (material, coating, and geometry). For new composites, experimental studies must be performed in order to understand their machinability, and thereby help manufacturers establishing appropriate cutting data. In this study, investigations are conducted to analyze the effects of cutting parameters and drill bit diameter on the thrust force, surface roughness, specific cutting energy, and dust emission during dry drilling of a new hybrid biocomposite consisting of polypropylene reinforced with miscanthus fibers and biochar. A full factorial design was used for the experimental design. It was found that the feed rate, the spindle speed, and the drill bit diameter have significant effects on the thrust force, the surface roughness, and the specific cutting energy. The effects of the machining parameters and the drill bit diameter on ultrafine particles emitted were not statistically significant, while the feed rate and drill bit diameter had significant effects on fine particle emission.


2016 ◽  
Vol 857 ◽  
pp. 291-295 ◽  
Author(s):  
A.B. Abdullah ◽  
N.A. Ghaffar ◽  
Z. Samad

Accurate and strong fastener assembly depends on precision of the hole. For structural material likes composites, these criteria is very important. Drilling is the most common method in producing hole on composites. But the main problem of drilling is excessive tool wear that may affect the quality of the holes. Punching is another alternative in making a hole. The main objective of this study is to compare between drilling and punching in terms of hole quality. The scanned images of the produced hole will be captured using commercial 3D optical surface measurement method namely Alicona IFM. The effect to the quality of the produced hole will be measured and compared between drilling and punching.


Sign in / Sign up

Export Citation Format

Share Document